Surface ligand dynamics of colloidal quantum dots (QDs) has been revealed as an important issue for determining QDs performance in their synthesis and postsynthesis treatment, such as ligand-related photoluminescence, colloidal stability, and so forth. However, this issue is less associated with the preparation of highly luminescent nanocomposites, which usually leads to poor performance and repeatability. In this work, on the basis of the studies about surface ligand dynamics of aqueous QDs, highly luminescent QDs-cellulose composites are prepared and employed to fabricate high color purity light-emitting diodes (LEDs). Detailed investigations indicate that the species of QD capping ligands and in particular the temperature are the key for controlling the ligand dynamics. The preparation of nanocomposites using less dynamic ligand-modified QDs at low temperature overcomes the conventional problems of QD aggregation, low QD content, luminescence quenching and shift, thus producing highly luminescent QDs-cellulose composites. This protocol is available for a variety of aqueous QDs, such as CdS, CdSe, CdTe, and CdSe(x)Te(1-x), which permits the design and fabrication of QD-based LEDs using the nanocomposites as color conversion layer on a blue emitting InGaN chip.
Flexible pressure sensors are essential components of electronic skins for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics, robotic skins, and prosthetic limbs. Here we report a new kind of flexible pressure sensor. The sensors are capacitive, and composed of two Ag wrinkled electrodes separated by a carbon nanotubes (CNTs)/polydimethylsiloxane (PDMS) composite deformable dielectric layer. Ag wrinkled electrodes were formed by vacuum deposition on top of pre-strained and relaxed PDMS substrates which were treated using an O2 plasma, a surface functionalization process, and a magnetron sputtering process. Ultimately, the developed sensor exhibits a maximum sensitivity of 19.80% kPa−1 to capacitance, great durability over 500 cycles, and rapid mechanical responses (<200 ms). We also demonstrate that our sensor can be used to effectively detect the location and distribution of finger pressure.
Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.
The research aimed to examine the expression of lncRNA H19, miR-188, and LCoR in mouse bone marrow stromal stem cells (mBMSCs), and to investigate the regulatory mechanism of lncRNA H19/miR-188/LCoR in osteogenic and adipogenic differentiation of mBMSCs. The expression of miR-188 in mBMSCs and osteogenesis induced mBMSCs was detected by stem-loop RT-PCR, while the expression of H19 and LCoR in mBMSCs and adipogenesis induced mBMSCs was examined by qRT-PCR. Luciferase reporter assay verified the targeted relationship between miR-188 and H19 or LCoR. Cell proliferation ability was determined by MTT assay, while cell surface markers of mBMSCs were analyzed via flow cytometry. Alkaline phosphatase staining and Alizarin red staining was utilized to detect the osteogenic differentiation capability of mBMSCs, whereas Oil red O staining was applied to examine the ability of adipogenic differentiation of mBMSCs. The expression of miR-188 was lower in osteogenesis induced mBMSCs compared with normal mBMSCs, while H19 and LCoR were downregulated in adipogenic induced mBMSCs. Si-H19 could significantly increase the mRNA level of miR-188. Meanwhile, miR-188 directly regulated LCoR in mBMSCs. Overexpression of miR-188 and knockdown of LCoR suppressed osteogenic differentiation and induced adipogenic differentiation in mBMSCs. Long noncoding RNA H19 mediates LCoR to regulate the balance between osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188.
ObjectiveThe purpose of this study is to determine the correlation between non-technical risk factors and the perioperative flap survival rate and to evaluate the choice of skin flap for the reconstruction of foot and ankle.MethodsThis was a clinical retrospective study. Nine variables were identified. The Kaplan-Meier method coupled with a log-rank test and a Cox regression model was used to predict the risk factors that influence the perioperative flap survival rate. The relationship between postoperative wound infection and risk factors was also analyzed using a logistic regression model.ResultsThe overall flap survival rate was 85.42%. The necrosis rates of free flaps and pedicled flaps were 5.26% and 20.69%, respectively. According to the Cox regression model, flap type (hazard ratio [HR] = 2.592; 95% confidence interval [CI] (1.606, 4.184); P < 0.001) and postoperative wound infection (HR = 0.266; 95% CI (0.134, 0.529); P < 0.001) were found to be statistically significant risk factors associated with flap necrosis. Based on the logistic regression model, preoperative wound bed inflammation (odds ratio [OR] = 11.371,95% CI (3.117, 41.478), P < 0.001) was a statistically significant risk factor for postoperative wound infection.ConclusionFlap type and postoperative wound infection were both independent risk factors influencing the flap survival rate in the foot and ankle. However, postoperative wound infection was a risk factor for the pedicled flap but not for the free flap. Microvascular anastomosis is a major cause of free flap necrosis. To reconstruct complex or wide soft tissue defects of the foot or ankle, free flaps are safer and more reliable than pedicled flaps and should thus be the primary choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.