IR64, the most widely grown indica rice in South and Southeast Asia, possesses many positive agronomic characteristics (e.g., wide adaptability, high yield potential, tolerance to multiple diseases and pests, and good eating quality,) that make it an ideal genotype for identifying mutational changes in traits of agronomic importance. We have produced a large collection of chemical and irradiation-induced IR64 mutants with different genetic lesions that are amenable to both forward and reverse genetics. About 60,000 IR64 mutants have been generated by mutagenesis using chemicals (diepoxybutane and ethylmethanesulfonate) and irradiation (fast neutron and gamma ray). More than 38,000 independent lines have been advanced to M4 generation enabling evaluation of quantitative traits by replicated trials. Morphological variations at vegetative and reproductive stages, including plant architecture, growth habit, pigmentation and various physiological characters, are commonly observed in the four mutagenized populations. Conditional mutants such as gain or loss of resistance to blast, bacterial blight, and tungro disease have been identified at frequencies ranging from 0.01% to 0.1%. Results from pilot experiments indicate that the mutant collections are suitable for reverse genetics through PCR-detection of deletions and TILLING. Furthermore, deletions can be detected using oligomer chips suggesting a general technique to pinpoint deletions when genome-wide oligomer chips are broadly available. M4 mutant seeds are available for users for screening of altered response to multiple stresses. So far, more than 15,000 mutant lines have been distributed. To facilitate broad usage of the mutants, a mutant database has been constructed in the International Rice Information System (IRIS; http: //www.iris.irri.org) to document the phenotypes and gene function discovered by users.
Accumulation of cytoplasmic triacylglycerol (TG) underlies hepatic steatosis, a major cause of cirrhosis. The pathways of cytoplasmic TG metabolism are not well known in hepatocytes, but evidence suggests an important role in lipolysis for adipose triglyceride lipase (ATGL). We created mice with liver-specific inactivation of Pnpla2, the ATGL gene. These ATGLLKO mice had severe progressive periportal macrovesicular and pericentral microvesicular hepatic steatosis (73, 150, and 226 lmol TG/g liver at 4, 8, and 12 months, respectively). However, plasma levels of glucose, TG, and cholesterol were similar to those of controls. Fasting 3-hydroxybutyrate level was normal, but in thin sections of liver, beta oxidation of palmitate was decreased by one-third in ATGLLKO mice compared with controls. Tests of very low-density lipoprotein production, glucose, and insulin tolerance and gluconeogenesis from pyruvate were normal. Plasma alanine aminotransferase levels were elevated in ATGLLKO mice, but histological estimates of inflammation and fibrosis and messenger RNA (mRNA) levels of tumor necrosis factor-a and interleukin-6 were similar to or lower than those in controls. ATGLLKO cholangiocytes also showed cytoplasmic lipid droplets, demonstrating that ATGL is also a major lipase in cholangiocytes. There was a 50-fold reduction of hepatic diacylglycerol acyltransferase 2 mRNA level and a 2.7-fold increase of lipolysosomes in hepatocytes (P < 0.001), suggesting reduced TG synthesis and increased lysosomal degradation of TG as potential compensatory mechanisms. Conclusion: Compared with the hepatic steatosis of obesity and diabetes, steatosis in ATGL deficiency is well tolerated metabolically. ATGLLKO mice will be useful for studying the pathophysiology of hepatic steatosis. (HEPATOLOGY 2011;54:122-132)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.