During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.
Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.