We have observed the vibrational levels v″=0–40 of the Cs2 a Σ3u+ state by perturbation facilitated infrared-infrared double resonance excitation and spectrally resolved fluorescence measurements, and derived a multiparameter Morse long range potential and molecular constants based on these data.
We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed A 1 Σ + u and b 3 Πu states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aimé Cotton primarily to study the X 1 Σ + g state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the b 3 Π ± 0u states as well as additional high resolution data. From Innsbruck University, we have precision data obtained with cold Cs2 molecules. Recent data from Temple University was obtained using the optical-optical double resonance polarization spectroscopy technique, and finally, a group at the University of Latvia has added additional LIF FTS data. In the Hamiltonian matrix, we have used analytic potentials (the Expanded Morse Oscillator form) with both finite-difference (FD) coupled-channels and discrete variable representation (DVR) calculations of the term values. Fitted diagonal and off-diagonal spin-orbit functions are obtained and compared with ab initio results from Temple and Moscow State universities.
Using perturbation facilitated infrared-infrared double resonance excitation of the (85)Rb(2) molecule, we have observed spectrally resolved fluorescence to the a (3)Sigma(u)(+) state. We have analyzed the rovibrational energy level structure of the (85)Rb(2) a (3)Sigma(u)(+) state and derived a multiparameter Morse Long Range (MLR) potential and molecular constants for this state, which can be used to predict term values without needing to solve the radial Schrödinger equation.
The lowest electronically excited states of Na2 are of interest as intermediaries in the excitation of higher states and in the development of methods for producing cold molecules. We have compiled previously obtained spectroscopic data on the A 1Sigmau+ and b 3Piu states of Na2 from about 20 sources, both published and unpublished, together with new sub-Doppler linewidth measurements of about 15,000 A<--X transitions using polarization spectroscopy. We also present new ab initio results for the diagonal and off-diagonal spin-orbit functions. The discrete variable representation is used in conjunction with Hund's case a potentials plus spin-orbit effects to model data extending from v=0 to very close to the 3 2S+3 2P12 limit. Empirical estimates of the spin-orbit functions agree well with the ab initio functions for the accessible values of R. The potential function for the A state includes an exchange potential for S+P atoms, with a fitted coefficient somewhat larger than the predicted value. Observed and calculated term values are presented in an auxiliary (EPAPS) file as a database for future studies on Na2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.