SIRT6, a member of NAD positivity-dependent class III deacetylase sirtuin family, played versatile roles in human cancers. However, the expression and biological function of SIRT6 in gastric cancer (GC) remain to be investigated. In this study, we found that SIRT6 expression level was decreased in gastric cancer tissues and cell lines. Decreased SIRT6 expression was associated with unfavorable clinical parameters including tumor differentiation, tumor size and TNM stage. Importantly, decreased level of SIRT6 was associated with decreased rate of overall survival (OS) and disease‑free survival (DFS). Functionally, overexpression of SIRT6 in both BGC823 and SGC7901 cells inhibited cell viability and proliferation of GC cells. Furthermore, overexpression of SIRT6 in both BGC823 and SGC7901 cells prevented the cell cycle progress and increased cell apoptosis. In vivo experiments demonstrated that forced expression of SIRT6 in SGC-7901 cells inhibited the growth of SGC7901 cells in nude mice. Furthermore, the IHC staining for GC tissues showed that expression level of SIRT6 was decreased in GC tissues while the expression level of p-STAT3 was increased in GC tissues. GC tissues with high SIRT6 level showed significantly decreased level of p-STAT3. Mechanically, we demonstrated that SIRT6 blocked the activation of JAK2/STAT3 and inhibited the expression of cyclin D1 and Bcl2 which were downstream targets of JAK2/STAT3 pathway. Taken together, this study indicates that SIRT6 inhibits the growth of gastric cancer by inhibiting JAK2/STAT3 pathway.
BackgroundEndoplasmic reticulum (ER) stress is involved in many neurological and inflammatory responses. Peripheral inflammatory responses can induce central sensitization and trigger inflammatory pain. However, there is little research on the relationship between ER stress and inflammatory pain. In this study, we examined whether the ER stress response is involved in peripheral inflammatory pain using a formalin-induced rat pain model.MethodsRats were divided into the following five groups: control, formalin, formalin + vehicle, formalin + 4-phenylbutyric acid (4-PBA) (40 mg/kg) and formalin + 4-PBA (100 mg/kg). Formalin-induced pain was assessed behaviorally by recording licking activity. The expression levels of immunoglobulin-binding protein (BIP), activating transcription factor-6 (ATF6), phosphorylated inositol-requiring enzyme-1 (p-IRE1), phosphorylated protein kinase RNA-like ER kinase (p-PERK) and c-fos were quantitatively assessed by Western blot, and the distribution of BIP, ATF6 and c-fos in the lumbar enlargement of spinal cord were identified by immunohistochemistry in spinal dorsal horn slices. In addition, the concentrations of nitric oxide (NO) and prostaglandin E2 (PGE2) in the spinal cord were tested by biochemical measurement and enzyme-linked immunosorbent assay (ELISA), respectively.ResultsIntraperitoneal injection of 4-PBA at the dose of 100 mg/kg before formalin injection significantly decreased nociceptive behavior in the second phase compared with control, formalin, formalin + vehicle and formalin + 4-PBA (40 mg/kg) (P<0.05). Western blot showed that formalin injection significantly upregulated the expression of BIP, ATF6, p-PERK and c-fos in the spinal cord. This upregulation was reduced by peritoneal injection of 4-PBA (P<0.05), while expression of p-IRE1 was not altered by formalin treatment. Immunohistochemistry revealed markedly increased staining density for BIP, ATF6 and c-fos in the superficial spinal dorsal horn after formalin injection. This was significantly decreased by administration of 4-PBA (P<0.05). Compared with the formalin + vehicle group, 4-PBA inhibited the release of NO and PGE2 in the spinal cord (P<0.05).ConclusionThese results suggest that ER stress is involved in formalin-induced inflammatory pain and that inhibition of ER stress may attenuate central sensitization induced by peripheral inflammatory stimulation.
Apigenin, a flavonoid with multiple physiological and pharmacological activities, is associated with the prevention of cardiovascular diseases. The present study aimed to examine the roles and mechanisms of apigenin in the apoptosis of H9C2 rat cardiomyocytes, which were subjected to myocardial ischemia-reperfusion (MI/R) injury. Cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and cellular apoptosis were evaluated using cell counting kit-8 assays and flow cytometry. The content/activity of oxidative stress markers was determined using commercial kits. Western blot analysis and reverse transcription-quantitative polymerase chain reaction assays were used to measure protein and mRNA expression, respectively. The results demonstrated that apigenin had limited cytotoxicity on the viability of H9C2 rat cardiomyocytes. Apigenin reduced the oxidative stress, ROS production and cellular apoptotic capacity of MI/R-induced H9C2 cells. Apigenin additionally increased the MMP level of MI/R-induced H9C2 cells. Furthermore, apigenin modulated apoptosis-associated protein expression and phosphatidylinositol 3′-kinase (PI3K)/RAC-α serine/threonine-protein kinase (Akt) signaling in MI/R-induced H9C2 cells. Treatment with LY294002 reversed the anti-apoptotic effect of apigenin. In conclusion, apigenin suppressed the apoptosis of H9C2 cells that were subjected to MI/R injury by activating the PI3K/Akt pathway. It was suggested that apigenin may be effective as an MI/R therapy.
Background Recurrent implantation failure (RIF) is a major limitation of assisted reproductive technology, which is associated with impaired endometrial receptivity. Although N6-methyladenosine (m6A) has been demonstrated to be involved in various biological processes, its potential role in the endometrium of women with RIF has been poorly studied. Methods Global m6A levels and major m6A methyltransferases/demethylases mRNA levels in mid-secretory endometrium from normal and RIF women were examined by colorimetric m6A quantification strategy and quantitative real-time PCR, respectively. The effects of METTL3-mediated m6A modification on embryo attachment were evaluated by an vitro model of a confluent monolayer of Ishikawa cells co-cultured with BeWo spheroids, and the expression levels of homeo box A10 (HOXA10, a well-characterized marker of endometrial receptivity) and its downstream targets were evaluated by quantitative real-time PCR and Western blotting in METTL3-overexpressing Ishikawa cells. The molecular mechanism for METTL3 regulating HOXA10 expression was determined by methylated RNA immunoprecipitation assay and transcription inhibition assay. Results Global m6A methylation and METTL3 expression were significantly increased in the endometrial tissues from women with RIF compared with the controls. Overexpression of METTL3 in Ishikawa cells significantly decreased the ration of BeWo spheroid attachment, and inhibited HOXA10 expression with downstream decreased β3-integrin and increased empty spiracles homeobox 2 expression. METTL3 catalyzed the m6A methylation of HOXA10 mRNA and contributed to its decay with shortened half-life. Enforced expression of HOXA10 in Ishikawa cells effectively rescued the impairment of METTL3 on the embryo attachment in vitro. Conclusion Increased METTL3-mediated m6A modification represents an adverse impact on embryo implantation by inhibiting HOXA10 expression, contributing to the pathogenesis of RIF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.