Compared with the real Laplacian eigenvalues of undirected networks, the ones of asymmetrical directed networks might be complex, which is able to trigger additional collective dynamics, including the oscillatory behaviors. However, the high dimensionality of the reaction-diffusion systems defined on directed networks makes it difficult to do in-depth dynamic analysis. In this paper, we strictly derive the Hopf normal form of the general two-species reaction-diffusion systems defined on directed networks, with revealing some noteworthy differences in the derivation process from the corresponding on undirected networks. Applying the obtained theoretical framework, we conduct a rigorous Hopf bifurcation analysis for an SI reaction-diffusion system defined on directed networks, where numerical simulations are well consistent with theoretical analysis. Undoubtedly, our work will provide an important way to study the oscillations in directed networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.