Background Despite recent advances in the understanding of the swine gut microbiome at different growth stages, a comprehensive longitudinal study of the lifetime (birth to market) dynamics of the swine gut microbiome is lacking. Results To fill in this gap of knowledge, we repeatedly collected a total of 273 rectal swabs from 18 pigs during lactation (day (d) 0, 11, 20), nursery (d 27, 33, 41, 50, 61), growing (d 76, 90, 104, 116), and finishing (d 130, 146, 159, 174) stages. DNA was extracted and subjected to sequencing with an Illumina Miseq sequencer targeting the V4 region of the 16S rRNA gene. Sequences were analyzed with the Deblur algorithm in the QIIME2 package. A total of 19 phyla were detected in the lifetime pig gut microbiome with Firmicutes and Bacteroidetes being the most abundant. Alpha diversity including community richness (e.g., number of observed features) and diversity (e.g., Shannon index) showed an overall increasing trend. Distinct shifts in microbiome structure along different growth stages were observed. LEfSe analysis revealed 91 bacterial features that are stage-specific. To validate these discoveries, we performed fecal microbiota transplantation (FMT) by inoculating weanling pigs with mature fecal microbiota from a growing stage pig. Similar stage-specific patterns in microbiome diversity and structures were also observed in both the FMT pigs and their littermates. Although FMT remarkably increased growth performance, it did not change the overall swine gut microbiome. Only a few taxa including those associated with Streptococcus and Clostridiaceae were enriched in the FMT pigs. These data, together with several other lines of evidence, indicate potential roles these taxa play in promoting animal growth performance. Diet, especially crude fiber from corn, was a major factor shaping the swine gut microbiome. The priority effect, i.e., the order and timing of species arrival, was more evident in the solid feed stages. Conclusions The distinct stage-associated swine gut microbiome may be determined by the differences in diet and/or gut physiology at different growth stages. Our study provides insight into mechanisms governing gut microbiome succession and also underscores the importance of optimizing stage-specific probiotics aimed at improving animal health and production. Electronic supplementary material The online version of this article (10.1186/s40168-019-0721-7) contains supplementary material, which is available to authorized users.
BackgroundThe greatest impact on profitability of a commercial beef operation is reproduction. However, in beef heifers, little is known about the vaginal and fecal microbiota with respect to their relationship with fertility. To this end, we followed heifers through gestation to examine the dynamics of vaginal and fecal microbial composition throughout pregnancy.ResultsHeifers were exposed to an estrus synchronization protocol, observed over a 12-day period, artificially inseminated 12 h to 18 h after observed estrus, and subsequently exposed to bulls for a 50-day breeding season. Vaginal samples were taken at pre-breeding (n = 72), during the first (n = 72), and second trimester (n = 72) for all individuals, and third trimester for individuals with confirmed pregnancies (n = 56). Fecal samples were taken at pre-breeding (n = 32) and during the first trimester (n = 32), including bred and open individuals. Next generation sequencing of the V4 region of the16S rRNA gene via the Illumina MiSeq platform was applied to all samples. Shannon indices and the number of observed bacterial features were the same in fecal samples. However, significant differences in vaginal microbiome diversity between gestation stages were observed. No differences in beta-diversity were detected in vaginal or fecal samples regarding pregnancy status, but such differences were seen with fecal microbiome over time. Random Forest was developed to identify predictors of pregnancy status in vaginal (e.g., Histophilus, Clostridiaceae, Campylobacter) and fecal (e.g., Bacteroidales, Dorea) samples.ConclusionsOur study shows that bovine vaginal and fecal microbiome could be used as biomarkers of bovine reproduction. Further experiments are needed to validate these biomarkers and to examine their roles in a female’s ability to establish pregnancy.
The feeding regime of early, supplementary solid diet improved rumen development and production in goat kids. However, the signature microbiota responsible for linking dietary regimes to rumen function shifts are still unclear. This work analyzed the rumen microbiome and functions affected by an early solid diet regime using a combination of machine learning algorithms. Volatile fatty acids (i.e., acetate, propionate and butyrate) fermented by microbes were found to increase significantly in the supplementary solid diet groups. Predominant genera were found to alter significantly from unclassified Sphingobacteriaceae (non-supplementary group) to Prevotella (supplementary solid diet groups). Random Forest classification model revealed signature microbiota for solid diet that positively correlated with macronutrient intake, and linearly increased with volatile fatty acid production. Bacteria associated with carbohydrate and protein metabolism were also identified. Utilization of a Fish Taco analysis portrayed a set of intersecting core species contributed to rumen function shifts by the solid diet regime. The core community structures consisted of the specific, signature microbiota and the manipulation of their symbiotic partners are manipulated by extra nutrients from concentrate and/or forage, and then produce more volatile fatty acids to promote rumen development and functions eventually host development. Our study provides mechanisms of the microbiome governed by a solid diet regime early in life, and highlights the signature microbiota involved in animal health and production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.