This paper aimed to explore the roles of the combination of electroacupuncture (EA) and induced pluripotent stem cell-derived small extracellular vesicles (iPSC-EVs) on mice with ischemic stroke and the underlying mechanisms. A focal cerebral ischemia model was established in C57BL/6 mice through middle cerebral artery occlusion (MCAO). After 3 days, neurological impairment and motor function were examined by performing behavioral tests. The infarct volume and neuronal apoptosis were examined using TTC staining and TUNEL assays. Flow cytometry was performed to assess the proliferation of T lymphocytes. The changes in the interleukin (IL)-33/ST2 axis were evaluated by immunofluorescence and Western blotting. The combination of EA and iPSC-EVs treatment ameliorated neurological impairments and reduced the infarct volume and neuronal apoptosis in MCAO mice. EA plus iPSC-EVs suppressed T helper (Th1) and Th17 responses and promoted the regulatory T cell (Treg) response. In addition, EA plus iPSC-EVs exerted neuroprotective effects by regulating the IL-33/ST2 axis and inhibiting the microglia and astrocyte activation. Taken together, the study shows that EA and iPSC-EVs exerted a synergistic neuroprotective effect in MCAO mice, and this treatment may represent a novel potent therapy for ischemic stroke and damage to other tissues.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases and is pathologically characterized by α-synucleinopathy, which is harmful to dopaminergic neurons. However, the underlying mechanisms and pathogenesis of PD remain unclear. The AAA + ATPase Thorase was identified as being essential for neuroprotection and synaptic plasticity by regulating the AMPA receptor trafficking. Here, we found that conditional knockout of Thorase resulted in motor behaviors indicative of neurodegeneration. Genetic deletion of Thorase exacerbated phenotypes of α-synucleinopathy in a familial PD-like A53T mouse model, whereas overexpression of Thorase prevented α-syn accumulation in vivo. Biochemical and cell cultures studies presented here suggest that Thorase interacts with α-syn and regulates the degradation of ubiquitinated α-syn. Thorase deficiency promotes α-syn aggregation in primary cultured neurons. The discoveries in this study provide us with a further understanding of the pathogenesis of α-synucleinopathies including PD.
Chronic kidney disease (CKD), as one of the main complications of many autoimmune diseases, is difficult to cure, which places a huge burden on patients’ health and the economy and poses a great threat to human health. At present, the mainstream view is that autoimmune diseases are a series of diseases and complications caused by immune cell dysfunction leading to the attack of an organism’s tissues by its immune cells. The kidney is the organ most seriously affected by autoimmune diseases as it has a very close relationship with immune cells. With the development of an in-depth understanding of cell metabolism in recent years, an increasing number of scientists have discovered the metabolic changes in immune cells in the process of disease development, and we have a clearer understanding of the characteristics of the metabolic changes in immune cells. This suggests that the regulation of immune cell metabolism provides a new direction for the treatment and prevention of kidney damage caused by autoimmune diseases. Macrophages are important immune cells and are a double-edged sword in the repair process of kidney injury. Although they can repair damaged kidney tissue, over-repair will also lead to the loss of renal structural reconstruction function. In this review, from the perspective of metabolism, the metabolic characteristics of macrophages in the process of renal injury induced by autoimmune diseases are described, and the metabolites that can regulate the function of macrophages are summarized. We believe that treating macrophage metabolism as a target can provide new ideas for the treatment of the renal injury caused by autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.