Small earthquakes following a large event in the same area are typically aftershocks, which are usually less destructive than mainshocks. These aftershocks are considered mainshocks if they are larger than the previous mainshock. In this study, records of aftershocks (M > 2.5) of the Kermanshah Earthquake (M 7.3) in Iran were collected from the first second following the event to the end of September 2018. Different machine learning (ML) algorithms, including naive Bayes, k-nearest neighbors, a support vector machine, and random forests were used in conjunction with the slip distribution, Coulomb stress change on the source fault (deduced from synthetic aperture radar imagery), and orientations of neighboring active faults to predict the aftershock patterns. Seventy percent of the aftershocks were used for training based on a binary (“yes” or “no”) logic to predict locations of all aftershocks. While untested on independent datasets, receiver operating characteristic results of the same dataset indicate ML methods outperform routine Coulomb maps regarding the spatial prediction of aftershock patterns, especially when details of neighboring active faults are available. Logistic regression results, however, do not show significant differences with ML methods, as hidden information is likely better discovered using logistic regression analysis.
Anthropogenic land subsidence is an example of changes to the natural environment due to human activities and is one of the key factors in causing land degradation at a range of scales. Previous studies assessing land subsidence in the Valley of Mexico either focused on regional scale or short (noncontinuous) temporal scale. In this study, long‐term land subsidence (~15 years) is mapped in Mexico City (Mexico) using two interferometric synthetic aperture radar (InSAR) methods, namely, GEOS (Geoscience and Earth Observing Systems Group)‐Advance Time‐series Analysis and GEOS‐Small Baseline Subset. An inverse distance weighted‐based integration module and maximum likelihood regression‐based M estimator are introduced to further enhance these two methods. The land subsidence was continuously mapped using ENVISAT (2004–2007), ALOS‐1 (2007–2011), COSMO‐SkyMed (2011–2014), ALOS‐2 (2014–2018), and SENTINEL‐1 (2015–2017) data sets. A comparison between InSAR time‐series and GPS measurement shows that the subsidence rates are consistent over 2004–2018. The subsidence map over 15 years was generated finding a maximum subsidence over 4.5 m. By comparing our InSAR results with a land use map, we find that the subsidence centre in Mexico City is mostly located in the residential regions with the consumption of groundwater contributing considerably to the local subsidence rate. A total volume of 1.20 × 108 m3 of the land in Ciudad Nezahualcoyotl subsided/degraded. A continuing subsidence process limits the potential land use causing serious land degradation. Our results may be used to assist disaster reduction plans.
cracks triggered by the earthquake. Coulomb stress changes on the source fault 71 indicating consistency between aftershock distribution and high loaded stress 72 zones. Based on the stress change on neighbouring active faults around this area, 73 the Kermanshah Earthquake has brought two segments of the Zagros Mountain 74Front Fault (MFF), MFF-1 and MFF-2, 0.5-3.1MPa and 0.5-1.96MPa closer to 75 failure respectively, suggesting the risk of future earthquakes. Recent major 76 aftershocks (M W ≥5.0) could probably ease the seismic hazard on MFF-2, but the 77 risk of earthquakes on MFF-2 is still increasing.
On 17 June 2020, a large ancient landslide over the Aniangzhai (ANZ) slope, Danba County, Sichuan Province, China, was reactivated by a series of multiple phenomena, including debris flow triggered by heavy rainfall and flooding. In this study, Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1A/B satellite and optical images captured by the PlanetScope satellites were jointly used to analyze and explore the deformation characteristics and the Spatial-Temporal evolution of the ANZ landslide before and after the multi-hazard chain. Several areas of pre-failure movements were found from the multi-temporal optical images analysis before the reactivation of the ANZ landslide. The large post-failure surface deformation over the ANZ slope was also retrieved by the optical pixel offset tracking (POT) technique. A major northwest movement with the maximum horizontal deformation of up to 14.4 m was found. A time-series InSAR technique was applied to analyze the descending and ascending Sentinel-1A/B datasets spanning from March 2018 to July 2020, showing that the maximum magnitudes of the Line of Sight (LoS) displacement velocities were −70 mm/year and 45 mm/year, respectively. The Spatial-Temporal evolution over the ANZ landslide was analyzed based on the time-series results. No obvious change in acceleration (precursory deformation) was detected before the multi-hazard chain, while clear accelerated deformation can be observed over the slope after the event. This suggested that heavy rainfall was the most significant triggering factor for the generation and reactivation of the ANZ landslide. Other preparatory factors, including the deformation behavior, the undercutting and erosion of the river and the outburst flood, the local terrain conditions, and earthquakes, might also have played an important role in the generation and reactivation of the landslide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.