We demonstrate a facile solution-phase method for the synthesis of single-crystal, high aspect ratio, and ultrathin nanowires of hexagonal-phase Cu2S by thermal decomposition of CuS2CNEt2 in a mixed surfactant solvent of dodecanethiol and oleic acid at 160 degrees C. Cu2S nanowires can be controllably synthesized with a diameter as thin as 1.7 nm and length up to tens of micrometers; they are usually aligned in the form of bundles with a thickness of hundreds of nanometers. Based on the experimental results, the formation mechanism of the ultrathin nanowires has been properly proposed. Some key synthetic parameters, which have a significant effect on the sizes and shapes of the products, have also been investigated in detail. UV-vis spectroscopy measurement reveals that the resultant ultrathin nanowires show a strong quantum size effect.
A rapid microwave‐hydrothermal method has been developed to prepare monodisperse colloidal carbon nanospheres from glucose solution, and gold nanoparticles (AuNPs) are successfully assembled on the surface of the colloidal carbon nanospheres by a self‐assembly approach. The resulting AuNP/colloidal carbon nanosphere hybrid material (AuNP/C) has been characterized and is expected to offer a promising template for biomolecule immobilization and biosensor fabrication because of its satisfactory chemical stability and the good biocompatibility of AuNPs. Herein, as an example, it is demonstrated that the as‐prepared AuNP/C hybrid material can be conjugated with horseradish peroxidase‐labeled antibody (HRP‐Ab2) to fabricate HRP‐Ab2‐AuNP/C bioconjugates, which can then be used as a label for the sensitive detection of protein. The amperometric immunosensor fabricated on a carbon nanotube‐modified glass carbon electrode was very effective for antibody immobilization. The approach provided a linear response range between 0.01 and 250 ng mL−1 with a detection limit of 5.6 pg mL−1. The developed assay method was versatile, offered enhanced performances, and could be easily extended to other protein detection as well as DNA analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.