Psoriasis is one of the most common inflammatory skin conditions affecting both children and adults. Growing evidence indicates that T-helper 17 (Th17) cells and CD4 + CD25 + regulatory T (Treg) cells play an important role in the pathogenesis of psoriasis. However, the relationship between Th17 and Treg cells and their dynamic variations in paediatric psoriasis remain unclear. In this study, we found that both Th17 and FoxP3 + Treg cells and the ratio of Th17 to Treg cell frequency in the peripheral circulation were increased in patients with paediatric psoriasis and were positively correlated with the disease severity. The function of Treg to suppress CD4 + CD25 À T cell proliferation and IFN-c secretion was impaired during the onset of psoriasis. After disease remission, both the Th17 and Treg cell frequencies were decreased, and the suppressive function of the Treg cells was obviously restored. However, neither Treg cells from the disease onset nor those after remission can regulate IL-17 secretion by CD4 + T cells. These findings will further our understanding of the associations between Th17 and Treg cells in paediatric psoriasis and their influence on disease severity.
Qiliqiangxin (QL), a traditional Chinese medicine, has been used in the treatment of chronic heart failure. However, whether QL can benefit cardiac remodeling in the hypertensive state is unknown. We here examined the effects of QL on the development of cardiac hypertrophy through comparing those of losartan in C57BL/6 mice underlying transverse aorta constriction for 4 weeks. QL and losartan were administrated at 0.6 mg and 13.4 mg·kg·d, respectively. Cardiac hypertrophy, function, and remodeling were evaluated by echocardiography, catheterization, histology, and examination of specific gene expression and ERK phosphorylation. Cardiac apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression and especially the proliferation of cardiomyocytes and phosphorylation of ErbB receptors were examined in vivo to elucidate the mechanisms. Transverse aorta constriction for 2 weeks resulted in a significant cardiac hypertrophy, which was significantly suppressed by either QL or losartan treatment. At 4 weeks after transverse aorta constriction, although the development of cardiac dysfunction and remodeling and the increases in apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression were abrogated comparably between QL and losartan treatments, QL, but not losartan, enhanced proliferation of cardiomyocytes, which was paralleled with dowregulation of CCAAT/enhancer-binding protein β, upregulation of CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4, and increases in ErbB2 and ErbB4 phosphorylation. Furthermore, inhibition of either ErbB2 or CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4 abolished the cardiac protective effects of QL. Thus, QL inhibits myocardial inflammation and cardiomyocyte death and promotes cardiomyocyte proliferation, leading to an ameliorated cardiac remodeling and function in a mouse model of pressure overload. The possible mechanisms may involve inhibition of angiotensin II type 1 receptor and activation of ErbB receptors.
Background Circular RNAs (circRNAs) are involved in regulating tumor pathogenesis. The mechanism of circRNAs in gastric cancer (GC) is still unknown. Our study aimed to identify differentially expressed circRNAs and assess a novel circRNA (hsa_circ_0000144) in the proliferation, migration, and invasion in GC. Methods Gene ontology (GO) enrichment and analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, pathway network, and the ceRNA regulatory network of hsa_circ_0000144 targeting miRNAs and mRNAs were performed with the help of bioinformatics using R language and Perl software. hsa_circ_0000144 expression and circRNA knockdown in GC cell lines were detected using quantitative PCR (qPCR) in vitro. Cell proliferation, migration, and invasion after circRNA knockdown were measured using the cell counting kit-8 assay and Transwell assay. Results The circRNA expression profile GSE78092 downloaded from the Gene Expression Omnibus database included three GC patients and three normal tissues. Thirty-two differentially expressed circRNAs comprised six upregulated circRNAs and 26 downregulated circRNAs. In particular, the ErbB signaling pathway, neurotrophin signaling pathway, cellular senescence, and pathways in bladder cancer and GC played the most important roles in the pathway network. The expression of hsa_circ_0000144 was upregulated in GC cell lines. Hsa_circ_0000144 knockdown suppressed tumor growth in vitro. Conclusions Hsa_circ_0000144 promotes GC cell proliferation, migration, and invasion, and the ceRNA regulatory network of hsa_circ_0000144 targeting miRNAs and mRNAs might be biomarkers for GC diagnosis and targeted therapy.
Background: Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. microRNAs (miRNAs) repress gene expression by binding to complementary sequences in the 3' untranslated region (3'UTR) of target mRNAs. Alternative polyadenylation (APA) are relevant to the variability of the 3'UTR of mRNA. However, the posttranscriptional dysregulation of miRNAs and APA in CRC are poorly understood.Method: In this study, we conducted small RNA sequencing to identify differentially expressed miRNAs (DERs) and their target genes. Function analysis on DER-target genes can explain the regulation roles of miRNAs in CRC. The mutual regulation of miRNAs and APA was analyzed by combining miRNA data to 3'UTR alteration using 3' termini of polyadenylated RNAs sequencing (3T-seq) technique, and this was validated using TCGA gene expression data.Results: Our results showed 64 significant differentially expressed miRNAs (DERs) in CRC patients. Their target genes were related to cell adhesion and transcription regulation and were prevailingly involved in the CRC-related pathway. Integrative analysis of the miRNA and APA profile revealed 16 DERs were correlated with 12 polyadenylation factors, and six of them were significantly differently expressed in CRC. We also found four DERs that lost binding sites due to APA and showed a positive correlation between the miRNA and gene expression.Conclusion: Our study found that miRNAs regulated APA by modulating key polyadenylation factors, and several miRNAs lost their suppression on mRNA due to APA. Associating this with gene expression may provide some important clues for a deeper study of posttranscriptional cellular regulation and biomarker research in CRC. Our data provided the first evidence that the interaction between miRNAs and APA associated with gene expression could serve as biomarkers for CRC, suggesting that hsa-miR-133a-Frontiers in Genetics | www.frontiersin.org 3p and MLEC, hsa-miR-145-5p and SET, hsa-miR-1-3p and PPIA, and hsa-miR-378d and YY1 might be novel and potential biomarkers in improving the diagnosis of CRC.
Purpose: To investigate the function of long noncoding RNA (lncRNA) FGD5-AS1 in oral cancer (OC) and to further clarify the regulation of FGD5-AS1 on miR-153-3p/MCL1 axis. Results: FGD5-AS1 was significantly increased in OC tissues and cells. Loss of FGD5-AS1 inhibited the proliferation, migration and invasion of OC cells. FGD5-AS1 acted as a sponge of miR-153-3p, and MCL1 was direct target of miR-153-3p. Forced expression of miR-153-3p or inhibition of MCL1 reversed the promoted role of FGD5-AS1 on OC cells’ migration and invasion. The in vivo tumor growth assay showed that FGD5-AS1 promoted OC tumorigenesis by regulating miR-153-3p/MCL1 axis. Conclusions: Our research revealed lncRNA FGD5-AS1 acted as an oncogene by regulating MCL1 via sponging miR-153-3p, thus providing some novel experimental basis for clinical treatment or prevention of OC. Patients and Methods: The mRNA expression of FGD5-AS1, miR-153-3p and MCL1 was detected by qRT-PCR. CCK8 assay, Edu assay, wound healing assay and transwell assay were used to detect the FGD5-AS1/ miR-153-3p/MCL1 axis function on proliferation, migration and invasion in OC cells. Western blot was used to calculate protein level of MCL1. Luciferase assay was used to detect the binding of miR-153-3p and MCL1, FGD5-AS1and miR-153-3p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.