SUMMARY
The current widespread outbreak of Zika virus (ZIKV) infection has been linked to severe clinical birth defects, particularly microcephaly, warranting urgent study of the molecular mechanisms underlying ZIKV pathogenesis. Akt-mTOR signaling is one of the key cellular pathways essential for brain development and autophagy regulation. Here, we show that ZIKV infection of human fetal neural stem cells (fNSCs) causes inhibition of the Akt-mTOR pathway, leading to defective neurogenesis and aberrant activation of autophagy. By screening the three structural proteins and seven nonstructural proteins present in ZIKV, we found that two, NS4A and NS4B, cooperatively suppress the Akt-mTOR pathway and lead to cellular dysregulation. Corresponding proteins from the closely related dengue virus do not have the same effect on neurogenesis. Thus, our study highlights ZIKV NS4A and NS4B as candidate determinants of viral pathogenesis and identifies a mechanism of action for their effects, suggesting potential targets for anti-ZIKV therapeutic intervention.
Robust immune responses are essential for eliminating pathogens, but must be metered to avoid prolonged immune activation and potential host damage. Upon recognition of microbial DNA, the cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthetase, or cGAS, produces the second messenger cGAMP to initiate the STING pathway and subsequent interferon (IFN) production. We report that the direct interaction between cGAS and the Beclin-1 autophagy protein not only suppresses cGAMP synthesis to halt IFN production upon double stranded (ds)DNA stimulation or herpes simplex virus-1 infection, but also enhances autophagy-mediated degradation of cytosolic pathogen DNAs to prevent excessive cGAS activation and persistent immune stimulation. Specifically, this interaction releases Rubicon, a negative autophagy regulator, from the Beclin-1 complex, activating phosphatidylinositol 3-kinase class III activity and thereby inducing autophagy to remove cytosolic pathogen DNAs. Thus, the cGAS-Beclin-1 interaction shapes innate immune responses by regulating both cGAMP production and autophagy, resulting in well-balanced anti-microbial immune responses.
NF-κB is crucial for innate immune defence against microbial infection. Inhibition of NF-κB signalling has been observed with various bacterial infections. The NF-κB pathway critically requires multiple ubiquitin-chain signals of different natures. The question of whether ubiquitin-chain signalling and its specificity in NF-κB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-κB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-κB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-κB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-κB signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.