The concentration of a gas-phase semivolatile organic compound (SVOC) in equilibrium with its mass-fraction in the source material, y0, and the coefficient for partitioning of an SVOC between clothing and air, K, are key parameters for estimating emission and subsequent dermal exposure to SVOCs. Most of the available methods for their determination depend on achieving steady-state in ventilated chambers. This can be time-consuming and of variable accuracy. Additionally, no existing method simultaneously determines y0 and K in a single experiment. In this paper, we present a sealed-chamber method, using early-stage concentration measurements, to simultaneously determine y0 and K. The measurement error for the method is analyzed, and the optimization of experimental parameters is explored. Using this method, y0 for phthalates (DiBP, DnBP, and DEHP) emitted by two types of PVC flooring, coupled with K values for these phthalates partitioning between a cotton T-shirt and air, were measured at 25 and 32 °C (room and skin temperatures, respectively). The measured y0 values agree well with results obtained by alternate methods. The changes of y0 and K with temperature were used to approximate the changes in enthalpy, ΔH, associated with the relevant phase changes. We conclude with suggestions for further related research.
Semivolatile organic compounds (SVOCs) are present in many indoor materials. SVOC emissions can be characterized with a critical parameter, y , the gas-phase SVOC concentration in equilibrium with the source material. To reduce the required time and improve the accuracy of existing methods for measuring y , we developed a new method which uses solid-phase microextraction (SPME) to measure the concentration of an SVOC emitted by source material placed in a sealed chamber. Taking one typical indoor SVOC, di-(2-ethylhexyl) phthalate (DEHP), as the example, the experimental time was shortened from several days (even several months) to about 1 day, with relative errors of less than 5%. The measured y values agree well with the results obtained by independent methods. The saturated gas-phase concentration (y ) of DEHP was also measured. Based on the Clausius-Clapeyron equation, a correlation that reveals the effects of temperature, the mass fraction of DEHP in the source material, and y on y was established. The proposed method together with the correlation should be useful in estimating and controlling human exposure to indoor DEHP. The applicability of the present approach for other SVOCs and other SVOC source materials requires further study.
Background:EIF5A2, eukaryotic translation initiation factor 5A2, is associated with several human cancers. In this study, we investigated the role of EIF5A2 in the metastatic potential of localised invasive bladder cancer (BC) and its underlying molecular mechanisms were explored.Methods:The expression pattern of EIF5A2 in localised invasive BC was determined by immunohistochemistry. In addition, the function of EIF5A2 in BC and its underlying mechanisms were elucidated with a series of in vitro and in vivo assays.Results:Overexpression of EIF5A2 was an independent predictor for poor metastasis-free survival of localised invasive BC patients treated with radical cystectomy. Knockdown of EIF5A2 inhibited BC cell migratory and invasive capacities in vitro and metastatic potential in vivo and reversed epithelial–mesenchymal transition (EMT), whereas overexpression of EIF5A2 promoted BC cells motility and invasiveness in vitro and metastatic potential in vivo and induced EMT. In addition, we found that EIF5A2 might activate TGF-β1 expression to induce EMT and drive aggressiveness in BC cells. EIF5A2 stabilized STAT3 and stimulated nuclear localisation of STAT3, which resulted in increasing enrichment of STAT3 onto TGF-β1 promoter to enhance the transcription of TGF-β1.Conclusions:EIF5A2 overexpression predicts tumour metastatic potential in patients with localised invasive BC treated with radical cystectomy. Furthermore, EIF5A2 elevated TGF-β1 expression through STAT3 to induce EMT and promotes aggressiveness in BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.