Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt18Ni26Fe15Co14Cu27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt18Ni26Fe15Co14Cu27/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm−2, excellent activity (10.96 A mg−1Pt at −0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg−1Pt) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.
Despite high-energy density and low cost of the lithium-sulfur (Li-S) batteries, their commercial success is greatly impeded by their severe capacity decay during long-term cycling caused by polysulfide shuttling. Herein, a new phase engineering strategy is demonstrated for making MXene/1T-2H MoS 2 -C nanohybrids for boosting the performance of Li-S batteries in terms of capacity, rate ability, and stability. It is found that the plentiful positively charged S-vacancy defects created on MXene/1T-2H MoS 2 -C, proved by high-resolution transmission electron microscopy and electron paramagnetic resonance, can serve as strong adsorption and activation sites for polar polysulfide intermediates, accelerate redox reactions, and prevent the dissolution of polysulfides. As a consequence, the novel MXene/1T-2H MoS 2 -C-S cathode delivers a high initial capacity of 1194.7 mAh g −1 at 0.1 C, a high level of capacity retention of 799.3 mAh g −1 after 300 cycles at 0.5 C, and reliable operation in soft-package batteries. The present MXene/1T-2H MoS 2 -C becomes among the best cathode materials for Li-S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.