The study aimed to evaluate the effectiveness of blood pool and myocardial models made by stereolithography in the diagnosis of different types of congenital heart disease (CHD). Two modeling methods were applied in the diagnosis of 8 cases, and two control groups consisting of experts and students diagnosed the cases using echocardiography with computed tomography, blood pool models, and myocardial models. The importance, suitability, and simulation degree of different models were analyzed. The average diagnostic rate before and after 3D printing was used was 88.75% and 95.9% (P = 0.001) in the expert group and 60% and 91.6% (P = 0.000) in the student group, respectively. 3D printing was considered to be more important for the diagnosis of complex CHDs (very important; average, 87.8%) than simple CHDs (very important; average, 30.8%) (P = 0.000). Myocardial models were considered most realistic regarding the structure of the heart (average, 92.5%). In cases of congenital corrected transposition of great arteries, Williams syndrome, coronary artery fistula, tetralogy of Fallot, patent ductus arteriosus, and coarctation of the aorta, blood pool models were considered more effective (average, 92.1%), while in cases of double outlet right ventricle and ventricular septal defect, myocardial models were considered optimal (average, 80%).
Background: Prolonged mechanical ventilation (PMV) after cardiac surgery is associated with high morbidity and mortality. Patients following redo valve surgery possess many attributes that place them at risk for PMV, yet few studies particularly focused on them. The purpose of this study was to identify perioperative variables associated with PMV in redo valve surgery. Methods: A retrospective study, including 117 patients who underwent redo valve surgery from November 2017 to September 2021, was performed. The potential perioperative risk factors for PMV were collected. PMV was defined as the need for intubation and mechanical ventilation for >24 h, after completion of the operation. The clinical data were analyzed with univariate and multivariate analyses to identify risk factors for PMV following redo valve surgery. Results: The incidence of PMV was 38.5% (N = 45). Multiple logistic regression analysis showed perioperative risk factors for PMV included advanced age (age>57 years) [odds ratio (OR) 3.043, 95% confidence interval (CI) 1.172-7.905, P = 0.022], low weight (weight ≤58 kg) (OR 2.798, 95% CI: 1.088–7.199, P = 0.033), EuroSCORE II ≥6.8% (OR 3.467, 95% CI: 1.364–8.817, P = 0.009), and VIS at 12 hours post ICU admission (VIS12) >10 (OR 5.613, 95% CI: 2.211–14.249, P < 0.001). Conclusions: In adult patients undergoing redo valve surgery, advanced age, low weight, high EuroSCORE II and a high VIS at 12 hours post-ICU admission were associated with PMV. Hemodynamic status after operation were more important than preoperative and intraoperative variables in predicting PMV.
Background: Vasopressin can constrict peripheral arteries without constricting the pulmonary artery. Theoretically, vasopressin is suitable for the perioperative treatment of pulmonary hypertension. Few studies have investigated the use of pituitrin (a substitute for vasopressin) after cardiac defect repair surgery. This study aimed to analyze the effect of pituitrin on hemodynamics and to determine whether pituitrin can be used after surgical repair in adult patients with pulmonary arterial hypertension-congenital heart disease (PAH-CHD). Methods: A pulmonary artery catheter was used in all the patients for hemodynamic monitoring. Hemodynamic parameters were recorded before and at 0.5 h, 1 h, 6 h, 12 h and 24 h after pituitrin administration. The changes in the hemodynamic parameters before and after pituitrin use were analyzed through repeated measures analysis of variance. Results: A total of 110 patients with PAH-CHD underwent repair surgery; 23 patients were included in further analysis, including 11 with atrial septal defect, 9 with ventricular septal defect, and 3 with patent ductus arteriosus. Ten (43.5%) were men, with a mean age of 29.4 ± 6.8 years. Hemodynamic parameters before and after the oxygen test were as follows: radial artery oxygen saturation, 91.5% ± 4.4 vs. 97.9 ± 2.4%; pulmonary vascular resistance, 10.5 ± 1.8 Wood units (wu) vs. 5 ± 1.2 wu; systemic-pulmonary blood flow ratio (QP/QS), 1.1 ± 0.2 vs. 2.1 ± 0.9. With prolonged use, the systolic blood pressure of the radial artery increased significantly (P = 0.001), that of the pulmonary artery decreased significantly (P = 0.009), and RP/s decreased significantly (P < 0.001). Conclusion: Pituitrin as an alternative to vasopressin can increase arterial pressure, decrease pulmonary artery pressure, and reduce the pulmonary artery pressure/arterial pressure ratio after repair surgery in adult patients with PAH-CHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.