BackgroundDifferential expression analysis based on “next-generation” sequencing technologies is a fundamental means of studying RNA expression. We recently developed a multi-step normalization method (called TbT) for two-group RNA-seq data with replicates and demonstrated that the statistical methods available in four R packages (edgeR, DESeq, baySeq, and NBPSeq) together with TbT can produce a well-ranked gene list in which true differentially expressed genes (DEGs) are top-ranked and non-DEGs are bottom ranked. However, the advantages of the current TbT method come at the cost of a huge computation time. Moreover, the R packages did not have normalization methods based on such a multi-step strategy.ResultsTCC (an acronym for Tag Count Comparison) is an R package that provides a series of functions for differential expression analysis of tag count data. The package incorporates multi-step normalization methods, whose strategy is to remove potential DEGs before performing the data normalization. The normalization function based on this DEG elimination strategy (DEGES) includes (i) the original TbT method based on DEGES for two-group data with or without replicates, (ii) much faster methods for two-group data with or without replicates, and (iii) methods for multi-group comparison. TCC provides a simple unified interface to perform such analyses with combinations of functions provided by edgeR, DESeq, and baySeq. Additionally, a function for generating simulation data under various conditions and alternative DEGES procedures consisting of functions in the existing packages are provided. Bioinformatics scientists can use TCC to evaluate their methods, and biologists familiar with other R packages can easily learn what is done in TCC.ConclusionDEGES in TCC is essential for accurate normalization of tag count data, especially when up- and down-regulated DEGs in one of the samples are extremely biased in their number. TCC is useful for analyzing tag count data in various scenarios ranging from unbiased to extremely biased differential expression. TCC is available at http://www.iu.a.u-tokyo.ac.jp/~kadota/TCC/ and will appear in Bioconductor (http://bioconductor.org/) from ver. 2.13.
ObjectiveDifferential expression (DE) is a fundamental step in the analysis of RNA-Seq count data. We had previously developed an R/Bioconductor package (called TCC) for this purpose. While this package has the unique feature of an in-built robust normalization method, its use has so far been limited to R users only. There is thus, a need for an alternative to DE analysis by TCC for non-R users.ResultsHere, we present a graphical user interface for TCC (called TCC-GUI). Non-R users only need a web browser as the minimum requirement for its use (https://infinityloop.shinyapps.io/TCC-GUI/). TCC-GUI is implemented in R and encapsulated in Shiny application. It contains all the major functionalities of TCC, including DE pipelines with robust normalization and simulation data generation under various conditions. It also contains (i) tools for exploratory analysis, including a useful score termed average silhouette that measures the degree of separation of compared groups, (ii) visualization tools such as volcano plot and heatmap with hierarchical clustering, and (iii) a reporting tool using R Markdown. By virtue of the Shiny-based GUI framework, users can obtain results simply by mouse navigation. The source code for TCC-GUI is available at https://github.com/swsoyee/TCC-GUI under MIT license.Electronic supplementary materialThe online version of this article (10.1186/s13104-019-4179-2) contains supplementary material, which is available to authorized users.
Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future.
Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA–miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.
BackgroundRNA-seq is a powerful tool for measuring transcriptomes, especially for identifying differentially expressed genes or transcripts (DEGs) between sample groups. A number of methods have been developed for this task, and several evaluation studies have also been reported. However, those evaluations so far have been restricted to two-group comparisons. Accumulations of comparative studies for multi-group data are also desired.MethodsWe compare 12 pipelines available in nine R packages for detecting differential expressions (DE) from multi-group RNA-seq count data, focusing on three-group data with or without replicates. We evaluate those pipelines on the basis of both simulation data and real count data.ResultsAs a result, the pipelines in the TCC package performed comparably to or better than other pipelines under various simulation scenarios. TCC implements a multi-step normalization strategy (called DEGES) that internally uses functions provided by other representative packages (edgeR, DESeq2, and so on). We found considerably different numbers of identified DEGs (18.5 ~ 45.7 % of all genes) among the pipelines for the same real dataset but similar distributions of the classified expression patterns. We also found that DE results can roughly be estimated by the hierarchical dendrogram of sample clustering for the raw count data.ConclusionWe confirmed the DEGES-based pipelines implemented in TCC performed well in a three-group comparison as well as a two-group comparison. We recommend using the DEGES-based pipeline that internally uses edgeR (here called the EEE-E pipeline) for count data with replicates (especially for small sample sizes). For data without replicates, the DEGES-based pipeline with DESeq2 (called SSS-S) can be recommended.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-015-0794-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.