Interdisciplinary research promotes the emergence of scientific innovation. Researchers want to find interdisciplinary research in their research field. However, the number of scientific papers published today is increasing, and completing this task by hand is time-consuming and laborious. A neural network is a machine learning model that simulates the connection mode of neurons in the human brain. It is an important application of bionics in the artificial intelligence field. This paper proposes an approach to discovering interdisciplinary research automatically. The method generates an IRD-BERT neural network model for discovering interdisciplinary research based on the pre-trained model BERT. IRD-BERT is used to simulate the domain knowledge of experts, and author keywords can be projected into vector space by this model. According to the keyword distribution in the vector space, keywords with semantic anomalies can be identified. Papers that use these author keywords are likely to be interdisciplinary research. This method is applied to discover interdisciplinary research in the deep learning research field, and its performance is better than that of similar methods.
Cloud storage services bring great convenience to users, but also make data owners lose direct control of their data. How to ensure that deleted cloud data can never be recovered by cloud servers or attackers is a key issue in the field of cloud storage security, which is important to protect user privacy and data confidentiality in the cloud environment. Most existing schemes have the drawbacks of overreliance on key destruction and having the ability to decrypt part of the ciphertext after cracking the key. To solve these problems, a novel cloud data assured deletion scheme based on strong nonseparability is presented. By combining XOR operation with the block cipher, the cipher data become strongly nonseparable; thus, destroying any piece of cipher data will result in unrecoverable original data. Theoretical analysis and experimental results both show that the scheme achieves the expected goals of assured deletion, which has obvious performance advantages and stronger security compared with similar schemes.
With the development of the IoT (Internet of Things), sensors networks can bring a large amount of valuable data. In addition to be utilized in the local IoT applications, the data can also be traded in the connected edge servers. As an efficient resource allocation mechanism, the double auction has been widely used in the stock and futures markets and can be also applied in the data resource allocation in sensor networks. Currently, there usually exist multiple edge servers running double auctions competing with each other to attract data users (buyers) and producers (sellers). Therefore, the double auction market run on each edge server needs efficient mechanism to improve the allocation efficiency. Specifically, the pricing strategy of the double auction plays an important role on affecting traders’ profit, and thus, will affect the traders’ market choices and bidding strategies, which in turn affect the competition result of double auction markets. In addition, the traders’ trading strategies will also affect the market’s pricing strategy. Therefore, we need to analyze the double auction markets’ pricing strategy and traders’ trading strategies. Specifically, we use a deep reinforcement learning algorithm combined with mean field theory to solve this problem with a huge state and action space. For trading strategies, we use the Independent Parametrized Deep Q-Network (I-PDQN) algorithm combined with mean field theory to compute the Nash equilibrium strategies. We then compare it with the fictitious play (FP) algorithm. The experimental results show that the computation speed of I-PDQN algorithm is significantly faster than that of FP algorithm. For pricing strategies, the double auction markets will dynamically adjust the pricing strategy according to traders’ trading strategies. This is a sequential decision-making process involving multiple agents. Therefore, we model it as a Markov game. We adopt Multiagent Deep Deterministic Policy Gradient (MADDPG) algorithm to analyze the Nash equilibrium pricing strategies. The experimental results show that the MADDPG algorithm solves the problem faster than the FP algorithm.
The rapid development of mobile device applications put tremendous pressure on edge nodes with limited computing capabilities, which may cause poor user experience. To solve this problem, collaborative cloud-edge computing is proposed. In the cloud-edge computing, an edge node with limited local resources can rent more resources from a cloud node. According to the nature of cloud service, cloud service can be divided into private cloud and public cloud. In a private cloud environment, the edge node must allocate resources between the cloud node and the edge node. In a public cloud environment, since public cloud service providers offer various pricing modes for users’ different computing demands, the edge node also must select the appropriate pricing mode of cloud service; which is a sequential decision problem. In this stydy, we model it as a Markov decision process and parameterized action Markov decision process, and we propose a resource allocation algorithm cost efficient resource allocation with private cloud (CERAI) and cost efficient resource allocation with public cloud (CERAU) in the collaborative cloud-edge environment based on the deep reinforcement learning algorithm deep deterministic policy gradient and P-DQN. Next, we evaluated CERAI and CERAU against three typical resource allocation algorithms based on synthetic and real data of Google datasets. The experimental results demonstrate that CERAI and CERAU can effectively reduce the long-term operating cost of collaborative cloud-side computing in various demanding settings. Our analysis can provide some useful insights for enterprises to design the resource allocation strategy in the collaborative cloud-side computing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.