Aphids are frequently engaged in mutualistic associations with endosymbionts.Symbionts are bacterial or fungal microorganisms that can be obligate or facultative to aphids. Research showed facultative (or secondary) symbionts have numerous effects on their host aphids such as resistance to heat shock, parasitoids and fungus etc., which may consequently promote a co-evolution between symbionts and hosts. However, this symbiotic relation may be affected by several factors, such as the ability of symbionts to spread from aphids to others within and across populations, and the cost of infections for hosts. Moreover, aphid-symbionts interactions may be affected by aphid living environment such as its host plant, the presence of natural enemies or the temperature. Here we firstly described the functions of nine facultative symbionts (Serratia symbiotica, Hamiltonella defensa, Regiella insecticola, Rickettsia, Rickettsiella, PAXS (pea aphid X-type symbiont), Spiroplasma, Wolbachia and Arsenophonus) studied in aphids one by one, and discussed the associations between these symbionts and aphids, plants and environment. We aim to have a better knowledge of the roles the facultative symbionts play in aphid biology, ecology and evolution, which we believe can provide new inspirations for aphid control.
Study of the mutualistic associations between facultative symbionts and aphids are developed only in a few models. That survey on the situation and distribution of the symbionts in a certain area is helpful to obtain clues for the acquisition and spread of them as well as their roles played in host evolution. To understand the infection patterns of seven facultative symbionts (Serratia symbiotica, Hamiltonella defensa, Regiella insecticola, Rickettsia, Spiroplasma, Wolbachia, and Arsenophonus) in Rhopalosiphum padi (Linnaeus) and Rhopalosiphum maidis (Fitch), we collected 882 R. maidis samples (37 geographical populations) from China and 585 R. padi samples (32 geographical populations) from China and Europe. Results showed that both species were widely infected with various symbionts and totally 50.8% of R. maidis and 50.1% of R. padi were multi‐infected with targeted symbionts. However, very few Rhopalosiphum aphids were infected with S. symbiotica. The infection frequencies of some symbionts were related to the latitude of collecting sites, suggesting the importance of environmental factors in shaping the geographic distribution of facultative symbionts. Also, R. maidis and R. padi were infected with different H. defensa strains based on phylogenetic analysis which may be determined by host ×symbiont genotype interactions. According to our results, the ubiquitous symbionts may play important roles in the evolution of their host aphid and their impacts on adaptation of R. padi and R. maidis were discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.