Background: Chronic obstructive pulmonary disease (COPD) skeletal muscle dysfunction is a prevalent malady that significantly affects patients' prognosis and quality of life. Although the study of this disease has attracted considerable attention, a definite animal model is yet to be established. This study investigates whether smoke exposure could lead to the development of a COPD skeletal muscle dysfunction model in rats. Methods: Sprague Dawley rats were randomly divided into model (MG, n = 8) and control groups (CG, n = 6). The MG was exposed to cigarette smoke for 16 weeks while the CG was not. The body weight and forelimb grip strength of rats were monitored monthly. The pulmonary function and the strength of tibialis anterior muscle were assessed in vitro and compared after establishing the model. The histological changes in lung and gastrocnemius muscles were observed. The expressions of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were detected by ELISA, while the expressions of Atrogin-1 and MuRF1 in the gastrocnemius muscle were determined by Western blotting. Results: Smoke exposure slowly increases the body weight and forelimb grip strength of MG rats, compared to CG rats. However, it significantly decreases the pulmonary ventilation function and the skeletal muscle contractility of the MG in vitro. Histologically, the lung tissues of MG show typical pathological manifestations of emphysema, while the skeletal muscles present muscular atrophy. The expressions of IL-6, IL-8, and TNF-α in MG rats are significantly higher than those measured in CG rats. Increased levels of Atrogin-1 and MuRF1 were also detected in the gastrocnemius muscle tissue of MG. Conclusion: Progressive smoking exposure decreases the contractile function of skeletal muscles, leading to muscular atrophy. It also increases the expressions of inflammatory and muscle protein degradation factors in COPD rats. This indicates that smoke exposure could be used to establish a COPD skeletal muscle dysfunction model in rats.
decreased diaphragm function is a crucial factor leading to reduced ventilatory efficiency and worsening of quality of life in chronic obstructive pulmonary disease (cOPd). Exercise training has been demonstrated to effectively improve the function of the diaphragm. However, the mechanism of this process has not been identified. The emergence of metabolomics has allowed the exploration of new ideas. The present study aimed to analyze the potential biomarkers of exercise-dependent enhancement of diaphragm function in COPD using metabolomics. Sprague Dawley rats were divided into three groups: COPD + exercise group (CEG); COPD model group (CMG); and control group (CG). The first two groups were exposed to cigarette smoke for 16 weeks to establish a COPD model. Then, the rats in the CEG underwent aerobic exercise training for 9 weeks. Following confirmation that exercise effectively improved the diaphragm function, a gas chromatography tandem time-of-flight mass spectrometry analysis system was used to detect the differential metabolites and associated pathways in the diaphragm muscles of the different groups. Following exercise intervention, the pulmonary function and diaphragm contractility of the CEG rats were significantly improved compared with those of the CMG rats. A total of 36 different metabolites were identified in the comparison between the CMG and the CG. Pathway enrichment analysis indicated that these different metabolites were involved in 17 pathways. A total of 29 different metabolites were identified in the comparison between the CMG and the CEG, which are involved in 14 pathways. Candidate biomarkers were selected, and the pathways analysis of these metabolites demonstrated that 2 types of metabolic pathways, the nicotinic acid and nicotinamide metabolism and arginine and proline metabolism pathways, were associated with exercise-induced pulmonary rehabilitation.
OBJECTIVE: To quantify the relationship between strength and endurance of knee extensor and flexor and exercise capacity in patients with chronic obstructive pulmonary disease (COPD).METHODS: A total of 108 patients with stable COPD (age: 65 years, IQR25–75: 59–72) were enrolled in this cross-sectional study. Knee extensor and flexor function was evaluated using the isokinetic test, and the parameters attained were considered as independent variables. Exercise capacity was evaluated using 6-minute walking test (6MWT) and 30-second sit-to-stand test (30s SST), and the results were considered as dependent variables. The association between lower-limb muscle function and exercise capacity was assessed using multiple regression analysis.RESULTS: The patients mostly had moderate-to-severe airflow obstruction with a post-bronchodilator forced expiratory volume in 1 second (FEV1) of 57.87 ± 17.71% predicted. In multiple regression analysis, flexor total work (TW), extensor endurance ratio (ER), age and FEV1%pred were significantly associated with 6MWT (adjusted R2 = 0.455, P < 0.001). Flexor TW and age were significantly associated with 30s SST (adjusted R2 = 0.355, P < 0.001).CONCLUSION: Knee endurance has a significant relationship with exercise capacity, and knee flexor endurance seems to be an important factor contributing to exercise capacity in COPD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.