With the rapid development of Internet of Things technology, the image data on the Internet are growing at an amazing speed. How to describe the semantic content of massive image data is facing great challenges. Attentional mechanisms originate from the study of human vision. In cognitive science, due to bottlenecks in information processing, humans selectively attend to a portion of all information while ignoring the rest of the visible information. This study mainly discusses the natural language description generation method of Internet of Things intelligent image based on attention mechanism. In this study, a CMOS sensor based on Internet of Things technology is used for image data acquisition and display. FPGA samples cis16bit parallel port data, writes FIFO, stores image data, and then transmits it to host computer for display through network interface. In order to minimize the value of cross-entropy loss function, maximum-likelihood estimation is used to maximize the joint probability of word sequences in the language model when sentence descriptions are generated using the encoder-decoder framework. At each moment, in addition to image features, additional text features are input. Image feature vector and text feature vector are weighted and summed by attention mechanism at each time. In decoding, the attention mechanism gives each image region feature weight, and the long-term and short-term memory network decodes in turn, but the long-term and short-term memory network has limited decoding ability. We use bidirectional long-term and short-term memory network instead of long-term memory network, and dynamically focus on context information through forward LSTM and reverse LSTM. The specificity of the proposed network is 5% higher than that of the 3D convolution residual link network. The results show that the performance of image description model is improved by inputting image context and text context into long-term memory network decoder.
Background: Cryo-electron microscopy (Cryo-EM) plays an increasingly important role in the determination of the three-dimensional (3D) structure of macromolecules. In order to achieve 3D reconstruction results close to atomic resolution, 2D single-particle image classification is not only conducive to single-particle selection, but also a key step that affects 3D reconstruction. The main task is to cluster and align 2D single-grain images into non-heterogeneous groups to obtain sharper single-grain images by averaging calculations. The main difficulties are that the cryo-EM single-particle image has a low signal-to-noise ratio (SNR), cannot manually label the data, and the projection direction is random and the distribution is unknown. Therefore, in the low SNR scenario, how to obtain the characteristic information of the effective particles, improve the clustering accuracy, and thus improve the reconstruction accuracy, is a key problem in the 2D image analysis of single particles of cryo-EM.Results: Aiming at the above problems, we propose a learnable deep clustering method and a fast alignment weighted averaging method based on frequency domain space to effectively improve the class averaging results and improve the reconstruction accuracy. In particular, it is very prominent in the feature extraction and dimensionality reduction module. Compared with the classification method based on Bayesian and great likelihood, a large amount of single particle data is required to estimate the relative angle orientation of macromolecular single particles in the 3D structure, and we propose that the clustering method shows good results.Conclusions: SimcryoCluster can use the contrastive learning method to perform well in the unlabeled high-noise cryo-EM single particle image classification task, making it an important tool for cryo-EM protein structure determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.