These data suggest that DDCNN can be used to segment the CTV and OARs accurately and efficiently. It was invariant to the body size, body shape, and age of the patients. DDCNN could improve the consistency of contouring and streamline radiotherapy workflows.
Purpose: To develop a method for predicting optimal dose distributions, given the planning image and segmented anatomy, by applying deep learning techniques to a database of previously optimized and approved Intensity-modulated radiation therapy treatment plans. Methods: Eighty cases of early-stage nasopharyngeal cancer (NPC) were included in the study. Seventy cases were chosen randomly as the training set and the remaining as the test set. The inputs were the images with structures, with each target and organs at risk (OARs) assigned a unique label. The outputs were dose maps, including coarse dose maps and converted fine dose maps (FDM) from convolution. Two types of input images with structures were used in the model building. One type of input included the images (with associated structures) without manipulation. The second type of input involved modifying the image gray label with information from radiation beam geometry. ResNet101 was chosen as the deep learning network for both. The accuracy of predicted dose distributions was evaluated against the corresponding dose as used in the clinic. A global three-dimensional gamma analysis was calculated for the evaluation.Results: The proposed model trained with the two different sets of input images and structures could both predict patient-specific dose distributions accurately. For the out-of-field dose distributions, the model obtained from the input with radiation geometry performed better (dose difference in %, 4.7 AE 6.1% vs 5.5 AE 7.9%, P < 0.05). The mean Gamma pass rates of dose distributions predicted with both types of input were comparable for most OARs (P > 0.05), except for the bilateral optic nerves and the optic chiasm. Conclusions: The proposed system with radiation geometry added to the input is a promising method to generate patient-specific dose distributions for radiotherapy. It can be applied to obtain the dose distributions slice-by-slice for planning quality assurance and for guiding automated planning.
Radiation pneumonitis (RP) is one of the major toxicities of thoracic radiation therapy. RP incidence has been proven to be closely associated with the dosimetric factors and normal tissue control possibility (NTCP) factors. However, because these factors only utilize limited information of the dose distribution, the prediction abilities of these factors are modest. We adopted the dosiomics method for RP prediction. The dosiomics method first extracts spatial features of the dose distribution within ipsilateral, contralateral, and total lungs, and then uses these extracted features to construct prediction model via univariate and multivariate logistic regression (LR). The dosiomics method is validated using 70 non-small cell lung cancer (NSCLC) patients treated with volumetric modulated arc therapy (VMAT) radiotherapy. Dosimetric and NTCP factors based prediction models are also constructed to compare with the dosiomics features based prediction model. For the dosimetric, NTCP and dosiomics factors/features, the most significant single factors/features are the mean dose, parallel/serial (PS) NTCP and gray level co-occurrence matrix (GLCM) contrast of ipsilateral lung, respectively. And the area under curve (AUC) of univariate LR is 0.665, 0.710 and 0.709, respectively. The second significant factors are V
5
of contralateral lung, equivalent uniform dose (EUD) derived from PS NTCP of contralateral lung and the low gray level run emphasis of gray level run length matrix (GLRLM) of total lungs. The AUC of multivariate LR is improved to 0.676, 0.744, and 0.782, respectively. The results demonstrate that the univariate LR of dosiomics features has approximate predictive ability with NTCP factors, and the multivariate LR outperforms both the dosimetric and NTCP factors. In conclusion, the spatial features of dose distribution extracted by the dosiomics method effectively improves the prediction ability.
The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques: the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.