Patients with primary (AL) cardiac amyloidosis suffer from progressive cardiomyopathy with a median survival of less than 8 months and a 5-year survival of <10%. Contributing to this poor prognosis is the fact that these patients generally do not tolerate standard heart failure therapies. The molecular mechanisms underlying this deadly form of heart disease remain unclear. Although interstitial amyloid fibril deposition of Ig light chain proteins is a major cause of cardiac dysfunction in AL cardiac amyloidosis, we have previously shown that amyloid precursor proteins directly impair cardiac function at the cellular and isolated organ levels, independent of fibril formation. In this study, we report that amyloidogenic light chain (AL-LC) proteins provoke oxidative stress, cellular dysfunction, and apoptosis in isolated adult cardiomyocytes through activation of p38 mitogen-activated protein kinase (MAPK). AL-LC–induced p38 activation was found to be independent of the upstream MAPK kinase, MKK3/6, and instead depends upon transforming growth factor-β-activated protein kinase-1 binding protein-1 (TAB1)-mediated p38α MAPK autophosphorylation. Treatment of cardiomyocytes with SB203580, a selective p38 MAPK inhibitor, significantly attenuated AL-LC–induced oxidative stress, cellular dysfunction, and apoptosis. Our data provide a unique mechanistic insight into the pathogenesis of AL-LC cardiac toxicity and suggest that TAB1-mediated p38α MAPK autophosphorylation may serve as an important event leading to cardiac dysfunction and subsequent heart failure.
Rationale The rapid induction and orchestration of new blood vessels are critical for tissue repair in response to injury, such as myocardial infarction, and for physiological angiogenic responses, such as embryonic development and exercise. Objective We aimed to identify and characterize microRNAs (miR) that regulate pathological and physiological angiogenesis. Methods and Results We show that miR-26a regulates pathological and physiological angiogenesis by targeting endothelial cell (EC) bone morphogenic protein/SMAD1 signaling in vitro and in vivo. MiR-26a expression is increased in a model of acute myocardial infarction in mice and in human subjects with acute coronary syndromes. Ectopic expression of miR-26a markedly induced EC cycle arrest and inhibited EC migration, sprouting angiogenesis, and network tube formation in matrigel, whereas blockade of miR-26a had the opposite effects. Mechanistic studies demonstrate that miR-26a inhibits the bone morphogenic protein/SMAD1 signaling pathway in ECs by binding to the SMAD1 3′-untranslated region, an effect that decreased expression of Id1 and increased p21WAF/CIP and p27. In zebrafish, miR-26a overexpression inhibited formation of the caudal vein plexus, a bone morphogenic protein-responsive process, an effect rescued by ectopic SMAD1 expression. In mice, miR-26a overexpression inhibited EC SMAD1 expression and exercise-induced angiogenesis. Furthermore, systemic intravenous administration of an miR-26a inhibitor, locked nucleic acid-anti–miR-26a, increased SMAD1 expression and rapidly induced robust angiogenesis within 2 days, an effect associated with reduced myocardial infarct size and improved heart function. Conclusions These findings establish miR-26a as a regulator of bone morphogenic protein/SMAD1-mediated EC angiogenic responses, and that manipulating miR-26a expression could provide a new target for rapid angiogenic therapy in ischemic disease states.
The interleukin-7 receptor α chain (IL-7Rα) gene was identified as a top non–major histocompatibility complex–linked risk locus for multiple sclerosis (MS). Recently, we showed that a T helper 1 (TH1)–driven, but not a TH17-driven, form of MS exhibited a good clinical response to interferon-β (IFN-β) therapy. We now demonstrate that high serum levels of IL-7, particularly when paired with low levels of IL-17F, predict responsiveness to IFN-β and hence a TH1-driven subtype of MS. We also show that although IL-7 signaling is neither necessary nor sufficient for the induction or expansion of TH17 cells, IL-7 can greatly enhance both human and mouse TH1 cell differentiation. IL-7 alone is sufficient to induce human TH1 differentiation in the absence of IL-12 or other cytokines. Furthermore, targeting IL-7/IL-7Rα is beneficial in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Mice treated with IL-7Rα–blocking antibodies before or after onset of paralysis exhibited reduced clinical signs of EAE, with reduction in peripheral naïve and activated T cells, whereas central memory T, regulatory T, B, and natural killer cell populations were largely spared. IL-7Rα antibody treatment markedly reduced lymphocyte infiltration into the central nervous system in mice with EAE. Thus, a serum profile of high IL-7 may signify a TH1-driven form of MS and may predict outcome in MS patients undergoing IFN-β therapy. Blockade of IL-7 and the IL-7Rα pathway may have therapeutic potential in MS and other autoimmune diseases.
Background Ischemic cardiomyopathy is the major cause of heart failure and a significant cause of morbidity and mortality. The degree of left ventricular dysfunction in this setting is often out of proportion to the amount of overtly infarcted tissue and how decreased delivery of oxygen and nutrients leads to impaired contractility remains incompletely understood. The PHD prolyl hydroxylases are oxygen-sensitive enzymes that transduce changes in oxygen availability into changes in the stability of the HIF transcription factor, a master regulator of genes that promote survival in a low oxygen-environment. Methods and Results We found that cardiac-specific PHD inactivation causes ultrastructural, histological, and functional changes reminiscent of ischemic cardiomyopathy over time. Moreover, chronic expression of a stabilized HIFα variant in cardiomyocytes also led to dilated cardiomyopathy. Conclusion Sustained loss of PHD activity and subsequent HIF activation, as would occur in the setting of chronic ischemia, is sufficient to account for many of the changes in the hearts of individuals with chronic coronary artery disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.