As an economical alternative to solid corrosion resistant alloy (CRA) and clad pipes, mechanically lined or sleeved CRA pipes are proven to be effective in the transport of corrosive fluids in oil and gas industry. A major issue with these pipes is that pressure drop or fluctuations may cause buckling of the liner, resulting in irreparable and costly damage. This issue should be resolved in order to fully implement this type of pipes in oil and gas industry. In this study, post-buckling analysis of liner pipe encased in carbon steel outer pipe is carried out following the hydraulic expansion manufacturing process. Commercially available abaqus finite element software is employed. The proposed model is partly verified with an analytical solution and other numerical results under the condition of no residual contact pressure. Results of the parametric study reveal that increasing the residual contact pressure and decreasing the magnitude of geometric imperfection can both contribute to enhancing the buckling resistance.
Mechanically lined corrosion resistant pipes are produced by establishing a sufficiently high residual contact pressure (gripping force) between a corrosion resistant liner and a steel outer pipe. The most effective way to achieve such high contact pressure is by the thermal-hydraulic expansion manufacturing process. In this study, simulation of the thermal-hydraulic expansion process of mechanically lined corrosion resistant pipes is performed using the finite element method. The effects of process parameters such as process temperature, hydraulic pressure, and cooling rates for different material pairs of mechanically lined corrosion resistant pipes are investigated. Results reveal that both the water-and air-cooling rates have negligible influence on the magnitude of residual contact pressure. The furnace temperature is proved to be the governing factor to obtain high residual contact pressure for the material pairs N08825/X65 and N08031/X65. However, for the material pair 304/X65, increasing the temperature difference by reducing the hydraulic loading and unloading time durations as much as possible is the most effective way to increase the residual contact pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.