A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for three methods of implementation: propensity score stratification, weighting, and optimal full matching. Three simulation studies and one case study are presented to elaborate the proposed two-step Bayesian propensity score approach. Results of the simulation studies reveal that greater precision in the propensity score equation yields better recovery of the frequentist-based treatment effect. A slight advantage is shown for the Bayesian approach in small samples. Results also reveal that greater precision around the wrong treatment effect can lead to seriously distorted results. However, greater precision around the correct treatment effect parameter yields quite good results, with slight improvement seen with greater precision in the propensity score equation. A comparison of coverage rates for the conventional frequentist approach and proposed Bayesian approach is also provided. The case study reveals that credible intervals are wider than frequentist confidence intervals when priors are non-informative.
Purpose This study was designed to examine the relationships among minority dialect use, language ability, and young AAE-speaking children’s understanding and awareness of MAE. Methods 83 4- to 8-year-old African American English-speaking children participated in two experimental tasks. One task evaluated their awareness of differences between Mainstream American English (MAE) and African American English (AAE), while the other evaluated their lexical comprehension of MAE in contexts that were ambiguous in AAE but unambiguous in MAE. Receptive and expressive vocabulary, receptive syntax, and dialect density were also assessed. Results The results of a series of mixed-effect models showed that children with larger expressive vocabularies performed better on both experimental tasks, relative to children with smaller expressive vocabularies. Dialect density was a significant predictor only of MAE lexical comprehension; children with higher levels of dialect density were less accurate on this task. Conclusions Both vocabulary size and dialect density independently influenced MAE lexical comprehension. The results suggest that children with high levels of non-mainstream dialect use have more difficulty understanding words in MAE, at least in challenging contexts and suggest directions for future research.
This article considers Bayesian model averaging as a means of addressing uncertainty in the selection of variables in the propensity score equation. We investigate an approximate Bayesian model averaging approach based on the model-averaged propensity score estimates produced by the R package BMA but that ignores uncertainty in the propensity score. We also provide a fully Bayesian model averaging approach via Markov chain Monte Carlo sampling (MCMC) to account for uncertainty in both parameters and models. A detailed study of our approach examines the differences in the causal estimate when incorporating noninformative versus informative priors in the model averaging stage. We examine these approaches under common methods of propensity score implementation. In addition, we evaluate the impact of changing the size of Occam’s window used to narrow down the range of possible models. We also assess the predictive performance of both Bayesian model averaging propensity score approaches and compare it with the case without Bayesian model averaging. Overall, results show that both Bayesian model averaging propensity score approaches recover the treatment effect estimates well and generally provide larger uncertainty estimates, as expected. Both Bayesian model averaging approaches offer slightly better prediction of the propensity score compared with the Bayesian approach with a single propensity score equation. Covariate balance checks for the case study show that both Bayesian model averaging approaches offer good balance. The fully Bayesian model averaging approach also provides posterior probability intervals of the balance indices.
Bayesian alternatives to frequentist propensity score approaches have recently been proposed. However, few studies have investigated their covariate balancing properties. This article compares a recently developed two-step Bayesian propensity score approach to the frequentist approach with respect to covariate balance. The effects of different priors on covariate balance are evaluated and the differences between frequentist and Bayesian covariate balance are discussed. Results of the case study reveal that both the Bayesian and frequentist propensity score approaches achieve good covariate balance. The frequentist propensity score approach performs slightly better on covariate balance for stratification and weighting methods, whereas the two-step Bayesian approach offers slightly better covariate balance in the optimal full matching method. Results of a comprehensive simulation study reveal that accuracy and precision of prior information on propensity score model parameters do not greatly influence balance performance. Results of the simulation study also show that overall, the optimal full matching method provides the best covariate balance and treatment effect estimates compared to the stratification and weighting methods. A unique feature of covariate balance within Bayesian propensity score analysis is that we can obtain a distribution of balance indices in addition to the point estimates so that the variation in balance indices can be naturally captured to assist in covariate balance checking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.