Computer-aided drug design is one of important application areas of intelligent systems. Recently a novel method has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP), where inverse QSAR/QSPR is a major approach for drug design. This method consists of two phases: In the first phase, a feature function f is defined so that each chemical compound G is converted into a vector f (G) of several descriptors of G, and a prediction function ψ is constructed with an ANN so that ψ(f (G)) takes a value nearly equal to a given chemical property π for many chemical compounds G in a data set. In the second phase, given a target value y * of the chemical property π, a chemical structure G * is inferred in the following way. An MILP M is formulated so that M admits a feasible solution (x * , y * ) if and only if there exist vectors x * , y * and a chemical compound G * such that ψ(x * ) = y * and f (G * ) = x * . The method has been implemented for inferring acyclic chemical compounds. In this paper, we propose a new MILP for inferring acyclic chemical compounds by introducing a novel concept, skeleton tree, and conducted computational experiments. The results suggest that the proposed method outperforms the existing method when the diameter of graphs is up to around 6 to 8. For an instance for inferring acyclic chemical compounds with 38 non-hydrogen atoms from C, O and S and diameter 6, our method was 5 × 10 4 times faster.
A novel framework for inverse quantitative structure–activity relationships (inverse QSAR) has recently been proposed and developed using both artificial neural networks and mixed integer linear programming. However, classes of chemical graphs treated by the framework are limited. In order to deal with an arbitrary graph in the framework, we introduce a new model, called a two-layered model, and develop a corresponding method. In this model, each chemical graph is regarded as two parts: the exterior and the interior. The exterior consists of maximal acyclic induced subgraphs with bounded height, the interior is the connected subgraph obtained by ignoring the exterior, and the feature vector consists of the frequency of adjacent atom pairs in the interior and the frequency of chemical acyclic graphs in the exterior. Our method is more flexible than the existing method in the sense that any type of graphs can be inferred. We compared the proposed method with an existing method using several data sets obtained from PubChem database. The new method could infer more general chemical graphs with up to 50 non-hydrogen atoms. The proposed inverse QSAR method can be applied to the inference of more general chemical graphs than before.
Inference of chemical compounds with desired properties is important for drug design, chemo-informatics, and bioinformatics, to which various algorithmic and machine learning techniques have been applied. Recently, a novel method has been proposed for this inference problem using both artificial neural networks (ANN) and mixed integer linear programming (MILP). This method consists of the training phase and the inverse prediction phase. In the training phase, an ANN is trained so that the output of the ANN takes a value nearly equal to a given chemical property for each sample. In the inverse prediction phase, a chemical structure is inferred using MILP and enumeration so that the structure can have a desired output value for the trained ANN. However, the framework has been applied only to the case of acyclic and monocyclic chemical compounds so far. In this paper, we significantly extend the framework and present a new method for the inference problem for rank-2 chemical compounds (chemical graphs with cycle index 2). The results of computational experiments using such chemical properties as octanol/water partition coefficient, melting point, and boiling point suggest that the proposed method is much more useful than the previous method.
Analysis of chemical graphs is becoming a major research topic in computational molecular biology due to its potential applications to drug design. One of the major approaches in such a study is inverse quantitative structure activity/property relationships (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical activities/properties. Recently, a novel framework has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP). This method consists of a prediction phase and an inverse prediction phase. In the first phase, a feature vector f (G) of a chemical graph G is introduced and a prediction function ψ N on a chemical property π is constructed with an ANN N . In the second phase, given a target value y * of the chemical property π, a feature vector x * is inferred by solving an MILP formulated from the trained ANN N so that ψ N (x * ) is close to y * and then a set of chemical structures G * such that f (G * ) = x * is enumerated by a graph search algorithm. The framework has been applied to the case of chemical compounds with cycle index up to 2 so far. The computational results conducted on instances with n non-hydrogen atoms show that a feature vector x * can be inferred for up to around n = 40 whereas graphs G * can be enumerated for up to around n = 15. When applied to the case of chemical acyclic graphs, the maximum computable diameter of G * was around up to around 8. In this paper, we introduce a new characterization of graph structure, called "branch-height" based on which a new MILP formulation and a new graph search algorithm are designed for chemical acyclic graphs. The results of computational experiments using such chemical properties as octanol/water partition coefficient, boiling point and heat of combustion suggest that the proposed method can infer chemical acyclic graphs G * with n = 50 and diameter 30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.