Abstract:The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), β-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD 50 = of 24.59 µg/adult) and fumigant (LC 50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.
To develop natural product resources to control cigarette beetles (Lasioderma serricorne), the essential oil from Artemisia lavandulaefolia (Compositae) was investigated. Oil was extracted by hydrodistillation of the above-ground portion of A. lavandulaefolia and analyzed using gas chromatography-mass spectrometer (GC-MS). Extracted essential oil and three compounds isolated from the oil were then evaluated in laboratory assays to determine the fumigant, contact, and repellent efficacy against the stored-products’ pest, L. serricorne. The bioactive constituents from the oil extracts were identified as chamazulene (40.4%), 1,8-cineole (16.0%), and β-caryophyllene (11.5%). In the insecticidal activity assay, the adults of L. serricorne were susceptible to fumigant action of the essential oil and 1,8-cineole, with LC50 values of 31.81 and 5.18 mg/L air. The essential oil, 1,8-cineole, chamazulene, and β-caryophyllene exhibited contact toxicity with LD50 values of 13.51, 15.58, 15.18 and 35.52 μg/adult, respectively. During the repellency test, the essential oil and chamazulene had repellency approximating the positive control. The results indicated that chamazulene was abundant in A. lavandulaefolia essential oil and was toxic to cigarette beetles.
To characterize a novel thermophilic bcarotene 15,15 0 -monooxygenase BCMO 7211 isolated from the marine bacterium Candidatus Pelagibacter sp. HTCC7211. BCMO 7211 was functionally overexpressed in Escherichia coli and purified to homogeneity by Ni-NTA affinity chromatography and Superdex-200 gel filtration chromatography. Labeling experiments with H 2 18 O demonstrated that the oxygen atom in the terminal aldehyde group of the produced retinal molecules was provided from both molecular oxygen and water, indicating that BCMO 7211 is the first characterized bacterial b-carotene 15,15 0monooxygenase. BCMO 7211 exhibited broad carotenoid substrate specificity toward a-carotene, b-cryptoxanthin, b-carotene, zeaxanthin, and lutein. The optimum temperature, pH, and concentrations of the substrate and enzyme for retinal production were 60 °C, 9.0, 500 mg b-carotene/L, and 2.5 U/ml, respectively. Under optimum conditions, 888.3 mg/L retinal was produced in 60 min with a conversion rate of 89.0% (w/w). BCMO 7211 is a potential candidate for the enzymatic synthesis of retinal in biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.