Results of x-ray diffraction measurements are presented for ZnCr 2 O 4 and Ni 0.5 Zn 0.5 Cr 2 O 4 .Splits of the x-ray diffraction spectrum are observed in ZnCr 2 O 4 at 12 K. In Ni 0.5 Zn 0.5 Cr 2 O 4 no clear split is observed, but a full width at half maximum (FWHM) shows a steep increase below about 20 K. It is found that the integrated intensity of the diffraction spectra shows a softening behavior at low temperatures in ZnCr 2 O 4 .
3-Hydroxy-β-ionone, a flavor and fragrance compound with fruity violet-like characteristics, is widely applied in foodstuff and beverages, and is currently produced using synthetic chemistry. In this study, a novel lutein cleavage enzyme (EhLCD) was purified and characterized from Enterobacter hormaechei YT-3 to convert lutein to 3-hydroxy-β-ionone. Enzyme EhLCD was purified to homogeneity by ammonium sulfate precipitation, Q-Sepharose, phenyl-Sepharose, and Superdex 200 chromatography. The molecular mass of purified EhLCD, obtained by SDS-PAGE, was approximately 50 kDa. The enzyme exhibited the highest activity toward lutein, followed by zeaxanthin, β-cryptoxanthin, and β-carotene, suggesting that EhLCD exhibited higher catalytic efficiency for carotenoid substrates bearing 3-hydroxy-ionone rings. Isotope-labeling experiments showed that EhLCD incorporated oxygen from O2 into 3-hydroxy-β-ionone and followed a dioxygenase reaction mechanism for different carotenoid substrates. These results indicated that EhLCD is the first characterized bacterial lutein cleavage dioxygenase. Active EhLCD was also confirmed to be a Fe2+-dependent protein with 1 molar equivalent of non-haem Fe2+. The purified enzyme displayed optimal activity at 45 °C and pH 8.0. The optimum concentrations of the substrate, enzyme, and Tween 40 for 3-hydroxy-β-ionone production were 60 mM lutein/L, 1.5 U/mL, and 2% (w/v), respectively. Under optimum conditions, EhLCD produced 3-hydroxy-β-ionone (637.2 mg/L) in 60 min with a conversion of 87.0% (w/w), indicating that this enzyme is a potential candidate for the enzymatic synthesis of 3-hydroxy-β-ionone in biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.