These results indicate that TMP could protect ischemic brain damage, and promote cell proliferation and differentiation stimulated by ischemia, which might be related to the reduction of nNOS expression after treatment with TMP in rat cerebral ischemia model.
MicroRNA-25 (miR-25) has been reported to be a major miRNA marker in neural cells and is strongly expressed in ischemic brain tissues. However, the precise mechanism and effect of miR-25 in cerebral ischemia/reperfusion (I/R) injury needs further investigations. In the present study, the oxygen-glucose deprivation (OGD) model was constructed in human SH-SY5Y and IMR-32 cells to mimic I/R injury and to evaluate the role of miR-25 in regulating OGD/reperfusion (OGDR)-induced cell apoptosis. We found that miR-25 was downregulated in the OGDR model. Overexpression of miR-25 via miRNA-mimics transfection remarkably inhibited OGDR-induced cell apoptosis. Moreover, Fas was predicted as a target gene of miR-25 through bioinformatic analysis. The interaction between miR-25 and 3'-untranslated region (UTR) of Fas mRNA was confirmed by dual-luciferase reporter assay. Fas protein expression was downregulated by miR-25 overexpression in OGDR model. Subsequently, the small interfering RNA (siRNA)-mediated knockdown of Fas expression also inhibited cell apoptosis induced by OGDR model; in contrast, Fas overexpression abrogated the protective effects of miR-25 on OGDR-induced cells. Taken together, our results indicate that the upregulation of miR-25 inhibits cerebral I/R injury-induced apoptosis through downregulating Fas/FasL, which will provide a promising therapeutic target.
1Promoting both endogenous and exogenous neural stem cells' (NSCs) survival in the hostile host environments is essential to cell replacement therapy for central nervous system (CNS) disorders. Type 4 metabotropic glutamate receptor (mGluR4), one of the members of mGluRs, has been shown to protect neurons from acute and chronic excitotoxic insults in various brain damages. The present study investigated the preventive effects of mGluR4 on NSC injury induced by oxidative stress. Under challenge with H 2 O 2 , loss of cell viability was observed in cultured rat NSCs, and treatment with selective mGluR4 agonist VU0155041 conferred protective effects against the loss of cellular viability in a concentration-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Pretreatment of VU0155041 (30 mM) also inhibited the excessive NSC death induced by H 2 O 2 , and group III mGluRs antagonist (RS)-a-methylserine-O-phosphate (MSOP) or gene-targeted knockdown abolished the protective action of mGluR4, indicated by propidium iodide-Hoechst and terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) staining. Western blot assay demonstrated that mGluR4 activation reversed the decreased procaspase-8/9/3and the destructed Bcl-2/Bax expressing balance, and likewise, MSOP and mGluR4 knockdown abrogated the action of mGluR4 activity. Furthermore, inhibition of JNK and p38 mitogen-activated protein kinases (MAPKs) were observed after mGluR4 activation, and as paralleling control, JNK-specific inhibitor SP600125 and p38-specific inhibitor SB203580 significantly rescued the H 2 O 2 -mediated NSC apoptosis and cleavage of procaspase-3. We suggest that activation of mGluR4 prevents oxidative stress-induced NSC death and apoptotic-associated protein activities with involvement of inhibiting the JNK and p38 pathways in cell culture. Our findings may help to develop strategies for enhancing the resided and transplanted NSC survival after oxidative stress insult of CNS.
BackgroundMicroRNAs play crucial roles in tumorigenesis and tumor progression. miR-770 has been reported to be downregulated in several cancers and affects cancer cell proliferation, apoptosis, metastasis and drug resistance. However, the role and underlying molecular mechanism of miR-770 in human glioma remain unknown and need to be further elucidated.MethodsThe expression of miR-770 in glioma tissues and cell lines was measured by quantitative real-time PCR (qRT-PCR) to explore the association of miR-770 expression with clinicopathological characteristics. The expression of CDK8 was detected by qRT-PCR and Western blotting in glioma tissues. A target prediction program and a dual-luciferase reporter assay were used to confirm that CDK8 is a target gene of miR-770. MTT and cell counting assays were used to assess the effect of miR-770 on glioma cell proliferation. The cell cycle distribution and apoptosis were examined by flow cytometry. CDK8 siRNA and overexpression were used to further confirm the function of the target gene.ResultsWe demonstrated that miR-770 expression was downregulated in human glioma tissues and cell lines. The overexpression of miR-770 inhibited glioma cell proliferation and cell cycle G1-S transition and induced apoptosis. The inhibition of miR-770 facilitated cell proliferation and G1-S transition and suppressed apoptosis. miR-770 expression was inversely correlated with CDK8 expression in glioma tissues. CDK8 was confirmed to be a direct target of miR-770 by using a luciferase reporter assay. The overexpression of miR-770 decreased CDK8 expression at both the mRNA and protein levels, and the suppression of miR-770 increased CDK8 expression. Importantly, CDK8 silencing recapitulated the cellular and molecular effects observed upon miR-770 overexpression, and CDK8 overexpression eliminated the effects of miR-770 overexpression on glioma cells. Moreover, both exogenous expression of miR-770 and silencing of CDK8 resulted in suppression of the Wnt/β-catenin signaling pathway.ConclusionsOur study demonstrates that miR-770 inhibits glioma cell proliferation and G1-S transition and induces apoptosis through suppression of the Wnt/β-catenin signaling pathway by targeting CDK8. These findings suggest that miR-770 plays a significant role in glioma progression and serves as a potential therapeutic target for glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.