Unmanned aerial vehicle (UAV) remote sensing has great potential for vegetation mapping in complex urban landscapes due to the ultra-high resolution imagery acquired at low altitudes. Because of payload capacity restrictions, off-the-shelf digital cameras are widely used on medium and small sized UAVs. The limitation of low spectral resolution in digital cameras for vegetation mapping can be reduced by incorporating texture features and robust classifiers. Random Forest has been widely used in satellite remote sensing applications, but its usage in UAV image classification has not been well documented. The objectives of this paper were to propose a hybrid method using Random Forest and texture analysis to accurately differentiate land covers of urban vegetated areas, and analyze how classification accuracy changes with texture window size. Six least correlated second-order texture measures were calculated at nine different window sizes and added to original Red-Green-Blue (RGB) images as ancillary data. A Random Forest classifier consisting of 200 decision trees was used for classification in the spectral-textural feature space. Results indicated the following: (1) Random Forest outperformed traditional Maximum Likelihood classifier and showed similar performance to object-based image analysis in urban vegetation classification; (2) the inclusion of texture features improved classification accuracy significantly; (3) classification accuracy followed an inverted U relationship with texture window size. The results demonstrate that UAV provides an efficient and ideal platform for urban vegetation mapping. The hybrid OPEN ACCESSRemote Sens. 2015, 7 1075 method proposed in this paper shows good performance in differentiating urban vegetation mapping. The drawbacks of off-the-shelf digital cameras can be reduced by adopting Random Forest and texture analysis at the same time.
Flooding is a severe natural hazard, which poses a great threat to human life and property, especially in densely-populated urban areas. As one of the fastest developing fields in remote sensing applications, an unmanned aerial vehicle (UAV) can provide high-resolution data with a great potential for fast and accurate detection of inundated areas under complex urban landscapes. In this research, optical imagery was acquired by a mini-UAV to monitor the serious urban waterlogging in Yuyao, China. Texture features derived from gray-level co-occurrence matrix were included to increase the separability of different ground objects. A Random Forest classifier, consisting of 200 decision trees, was used to extract flooded areas in the spectral-textural feature space. Confusion matrix was used to assess the accuracy of the proposed method. Results indicated the following: (1) Random Forest showed good performance in urban flood mapping with an overall accuracy of 87.3% and a Kappa coefficient of 0.746; (2) the inclusion of texture features improved classification accuracy significantly; (3) Random Forest outperformed maximum likelihood and artificial neural network, and showed a similar performance to support vector machine. The results demonstrate that UAV can provide an ideal platform for urban flood monitoring and the proposed method shows great capability for the accurate extraction of inundated areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.