The operating instability of a dual compensation chamber loop heat pipe (DCC-LHP) including temperature hysteresis, reverse flow and temperature oscillation is described and explained in this paper. Test results indicate that the steady state operating temperature under the variable conductance mode is not the same during the power cycle tests with the same heat load, and it is lower during the power reduction cycle than that during the power increase cycle. Orientation has an effect on the heat load range when temperature hysteresis occurs, and the effect of power variation amplitude can be ignored. Reverse flow tends to occur in some of the startups at low heat loads, even if vapor existed in the vapor grooves initially, which is caused by a higher pressure inside the wick due to evaporation in the evaporator core or vapor penetration into it. Temperature oscillation tends to occur in some of the startups at low head loads or some steady-state operations at high heat loads. Especially when the compensation chamber with the bayonet through is above the evaporator, the incidence rate of temperature oscillation is high.loop heat pipe, dual compensation chamber, temperature hysteresis, reverse flow, temperature oscillation, experiment
Chemical electro-osmosis with an injected saline solution can be described as an efficient method for adjusting the soil microstructure and improving soil conductivity, and the effect of electro-osmotic consolidation on soft foundations can also be improved by this novel technology in regard to foundation treatment. To better study the electro-osmotic characteristics of soft clay from Taizhou with different grouting solutions, a series of chemical electro-osmotic experiments concerning the injection of CaCl2, MgCl2, NaCl, KCl, and deionized water were conducted in the laboratory based on custom test devices. The actual treatment effects of these experiments were compared by monitoring the drainage, current, voltage, elemental mass fractions in the soil, and soil structure. The chemical electro-osmotic method was further studied from a theoretical perspective based on the inherent link between the macro- and microlevel indexes. The results of the model test indicated that the crystal structure of the soil changed from an initial flocculated structure to a granular or laminated structure with the injection of CaCl2 and MgCl2 saline. Na+ was hereby replaced by multicharged ions, which served as the key factor that affected both the drainage efficiency and conductivity of the electro-osmotic process. Moreover, a novel one-dimensional electro-osmotic consolidation equation was introduced that considered variations in the electro-osmotic permeability coefficient, which better illustrated how the excess pore water pressure was deduced when compared with Esrig’s consolidation equation. Furthermore, the results of this experiment may be adopted as a reference or as evidence for the subsequent promotion and application of the electro-osmosis method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.