The survival of most patients with acute myelogenous leukemia (AML) remains poor, and novel therapeutic approaches are needed to improve outcomes. Given that the fraction of AML with mutated p53 is small (ϳ ϳ 10%), it appears rational to study MDM2 inhibitors as therapy for AML. Here, we report results of a detailed characterization of sensitivity and resistance to treatment ex vivo with the MDM2 inhibitor MI219 in AML blasts from 109 patients. In line with previous observations, all AML cases with mutated p53 were resistant to MI219. Importantly, approximately 30% of AML cases with unmutated p53 also demonstrated primary resistance to MI219. Analysis of potential mechanisms associated with MI219 resistance in AML blasts with wild-type p53 uncovered distinct molecular defects, including low or absent p53 protein induction after MDM2 inhibitor treatment or external irradiation. Furthermore, a separate subset of resistant blasts displayed robust p53 protein induction after MI219 treatment, indicative of defective p53 protein function or defects in the apoptotic p53 network. Finally, analysis of very sensitive AML cases uncovered a strong and significant association with mutated Flt3 status (Flt3-ITD)
It has been demonstrated that nuclear factor-kappa B (NF-κB), which is overactivated in hepatocellular carcinoma (HCC), plays important roles in the development of HCC. Recently, a group of dysregulated micro RNAs were reported to be involved in HCC progression. Further understanding of micro RNA-mediated regulation of NF-κB pathway may provide novel therapeutic targets for HCC. In this study, we found that miR-451 expression was markedly downregulated in HCC cells and tissues compared with immortalized normal liver epithelial cells and adjacent non- cancerous tissues, respectively. Upregulation of miR-451 inhibited, while downregulation of miR-451 promoted, the tumorigenicity of HCC cells both in vitro and in vivo. These changes in the properties of HCC cells were associated with deregulation of two well-known cellular G1/S transitional regulators, cyclin D1 and c-Myc, which are downstream targets of NF-κB pathway. Furthermore, we demonstrated that miR-451 upregulation led to downregulation of cyclin D1 and c-Myc through inhibition of NF-κB pathway initiated by direct targeting of the IKBKB 3'-untranslated region. Therefore, these results suggest that miR-451 downregulation plays an important role in promoting proliferation of HCC cells and may provide the basis for the development of novel anti-HCC therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.