Background Unfractionated heparin is widely used in the intensive care unit as an anticoagulant. However, weight-based heparin dosing has been shown to be suboptimal and may place patients at unnecessary risk during their intensive care unit stay. Objective In this study, we intended to develop and validate a machine learning–based model to predict heparin treatment outcomes and to provide dosage recommendations to clinicians. Methods A shallow neural network model was adopted in a retrospective cohort of patients from the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC III) database and patients admitted to the Peking Union Medical College Hospital (PUMCH). We modeled the subtherapeutic, normal, and supratherapeutic activated partial thromboplastin time (aPTT) as the outcomes of heparin treatment and used a group of clinical features for modeling. Our model classifies patients into 3 different therapeutic states. We tested the prediction ability of our model and evaluated its performance by using accuracy, the kappa coefficient, precision, recall, and the F1 score. Furthermore, a dosage recommendation module was designed and evaluated for clinical decision support. Results A total of 3607 patients selected from MIMIC III and 1549 patients admitted to the PUMCH who met our criteria were included in this study. The shallow neural network model showed results of F1 scores 0.887 (MIMIC III) and 0.925 (PUMCH). When compared with the actual dosage prescribed, our model recommended increasing the dosage for 72.2% (MIMIC III, 1240/1718) and 64.7% (PUMCH, 281/434) of the subtherapeutic patients and decreasing the dosage for 80.9% (MIMIC III, 504/623) and 76.7% (PUMCH, 277/361) of the supratherapeutic patients, suggesting that the recommendations can contribute to clinical improvements and that they may effectively reduce the time to optimal dosage in the clinical setting. Conclusions The evaluation of our model for predicting heparin treatment outcomes demonstrated that the developed model is potentially applicable for reducing the misdosage of heparin and for providing appropriate decision recommendations to clinicians.
Dialogue Act (DA) classification is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DA classification problem ranging from multi-classification to structured prediction, which suffer from two limitations: a) these methods are either handcrafted feature-based or have limited memories. b) adversarial examples can't be correctly classified by traditional training methods. To address these issues, in this paper we first cast the problem into a question and answering problem and proposed an improved dynamic memory networks with hierarchical pyramidal utterance encoder. Moreover, we apply adversarial training to train our proposed model. We evaluate our model on two public datasets, i.e., Switchboard dialogue act corpus and the MapTask corpus. Extensive experiments show that our proposed model is not only robust, but also achieves better performance when compared with some state-of-the-art baselines.
Background Modern clinical care in intensive care units is full of rich data, and machine learning has great potential to support clinical decision-making. The development of intelligent machine learning–based clinical decision support systems is facing great opportunities and challenges. Clinical decision support systems may directly help clinicians accurately diagnose, predict outcomes, identify risk events, or decide treatments at the point of care. Objective We aimed to review the research and application of machine learning–enabled clinical decision support studies in intensive care units to help clinicians, researchers, developers, and policy makers better understand the advantages and limitations of machine learning–supported diagnosis, outcome prediction, risk event identification, and intensive care unit point-of-care recommendations. Methods We searched papers published in the PubMed database between January 1980 and October 2020. We defined selection criteria to identify papers that focused on machine learning–enabled clinical decision support studies in intensive care units and reviewed the following aspects: research topics, study cohorts, machine learning models, analysis variables, and evaluation metrics. Results A total of 643 papers were collected, and using our selection criteria, 97 studies were found. Studies were categorized into 4 topics—monitoring, detection, and diagnosis (13/97, 13.4%), early identification of clinical events (32/97, 33.0%), outcome prediction and prognosis assessment (46/97, 47.6%), and treatment decision (6/97, 6.2%). Of the 97 papers, 82 (84.5%) studies used data from adult patients, 9 (9.3%) studies used data from pediatric patients, and 6 (6.2%) studies used data from neonates. We found that 65 (67.0%) studies used data from a single center, and 32 (33.0%) studies used a multicenter data set; 88 (90.7%) studies used supervised learning, 3 (3.1%) studies used unsupervised learning, and 6 (6.2%) studies used reinforcement learning. Clinical variable categories, starting with the most frequently used, were demographic (n=74), laboratory values (n=59), vital signs (n=55), scores (n=48), ventilation parameters (n=43), comorbidities (n=27), medications (n=18), outcome (n=14), fluid balance (n=13), nonmedicine therapy (n=10), symptoms (n=7), and medical history (n=4). The most frequently adopted evaluation metrics for clinical data modeling studies included area under the receiver operating characteristic curve (n=61), sensitivity (n=51), specificity (n=41), accuracy (n=29), and positive predictive value (n=23). Conclusions Early identification of clinical and outcome prediction and prognosis assessment contributed to approximately 80% of studies included in this review. Using new algorithms to solve intensive care unit clinical problems by developing reinforcement learning, active learning, and time-series analysis methods for clinical decision support will be greater development prospects in the future.
Event Detection (ED) is one of the most important tasks in the field of information extraction. The goal of ED is to find triggers in sentences and classify them into different event types. In previous works, the information of entity types are commonly utilized to benefit event detection. However, the sequential features of entity types have not been well utilized yet in the existing ED methods. In this paper, we propose a novel ED approach which learns sequential features from word sequences and entity type sequences separately, and combines these two types of sequential features with the help of a trigger-entity interaction learning module. The experimental results demonstrate that our proposed approach outperforms the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.