It is a long dream to realize the communication and navigation functionality in a satellite system in the world. This paper introduces how to establish the system, a positioning system based on communication satellites called Chinese Area Positioning System (CAPS). Instead of the typical navigation satellites, the communication satellites are configured firstly to transfer navigation signals from ground stations, and can be used to obtain service of the positioning, velocity and time, and to achieve the function of navigation and positioning. Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites, the measuring and calculation of transfer time of the signals, the carrier frequency drift in communication satellite signal transfer, how to improve the geometrical configuration of the constellation in the system, and the integration of navigation & communication. Several innovative methods are developed to make the new system have full functions of navigation and communication. Based on the development of crucial techniques and methods, the CAPS demonstration system has been designed and developed. Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E, 110.5°E, 134°E, 142°E and barometric altimetry are used in the CAPS system. The GEO satellites located at 134°E and 142°E are decommissioned GEO (DGEO) satellites. C-band is used as the navigation band. Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted. The ground segment consists of five ground stations; the master station is in Lintong, Xi'an. The ground stations take a lot of responsibilities, including monitor and management of the operation of all system components, determination of the satellite position and prediction of the satellite orbit, accomplishment of the virtual atomic clock measurement, transmission and receiving navigation signals to and from each satellite. In the north, the south, the east, the west and the center of Chinese main land, the function of CAPS demonstration system is checked and measured. In cars and on board the system is also checked and measured. The results are as follow: CA-code, horizontal positioning accuracy, 15-25 m (1σ), vertical, 1-3 m; P-code, horizontal positioning accuracy, 8-10 m (1σ), vertical, 1-3 m; velocity accuracy, CA-code, 0.13-0.30 m/s, P-code, 0.15-0.17 m/s; time accuracy, CA-code, 160 ns, P-code, 13 ns; determination accuracy of orbit ≤2 m. About 20 million US $ and two years are spent for the development of demonstration. A complete CAPS system is now being established. satellite navigation, communication satellite, astronomy application
The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3"G" (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navigation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to overcome the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D positioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accuracy orbit measurement; (3) combination of navigation message and wide/local area differential processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5 • and E110.5 • , two DGEOs located at E130 • and E142 • , as well as barometric altimetry as a virtual satellite. Static and dynamic performance tests were completed for the Eastern, the Western, the Northern, the Southern and the Middle regions of China. The evaluation results are as follows: (1) land static test, plane accuracy range: C/A code, 15∼25 m; P code, 5∼10 meters; altitude accuracy range, 1∼3 m; (2) land dynamic test, plane accuracy range, C/A code, 15∼25 m; P code, 8∼10 m; (3) velocity accuracy, C/A code, 0.13∼0.3 m s −1 , P code, 0.15∼0.17 m s −1 ; (4) timing accuracy, C/A code, 160 ns, P code, 13 ns; (5) timing compared accuracy of Two Way Satellite Time and Frequency Transfer (TWSTFT), average accuracy, 0.068 ns; (6) random error of the satellite ranging, 10.7 mm; (7) orbit determination accuracy, better than 2 m. The above stated random error is 1σ error. At present, this system is used as a preliminary operational system and a complete system with 3 GEO, 3 DGEO and 3 IGSO is being established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.