We study a new frictionless quasistatic contact problem for viscoelastic materials, in which contact conditions are described by the fractional Clarke generalized gradient of nonconvex and nonsmooth functions and a time-delay system. In addition, our constitutive relation is modeled using the fractional Kelvin–Voigt law with long memory. The existence of mild solutions for new history-dependent fractional differential hemivariational inequalities with a time-delay system are obtained by the Rothe method, properties of the Clarke generalized gradient, and a fixed-point theorem.
In this paper, we study a class of conformable frictionless contact problems with the surface traction driven by the conformable impulsive differential equation. The existence of a mild solution for conformable impulsive hemivariational inequality is obtained by the Rothe method, subjectivity of multivalued pseudomonotone operators and the property of the conformable derivative. Notice that we imply some new fractional viscoelastic constitutive laws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.