Original scientific paper Software reliability test is to test software with the purpose of verifying whether the software achieves reliability requirements and evaluating software reliability level. Statistical-based software reliability testing generally includes three parts: building usage model, test data generation and testing. The construction of software usage model should reflect user's real use as far as possible. A huge number of test cases are required to satisfy the probability distribution of the actual usage situation; otherwise, the reliability test will lose its original meaning. In this paper, we first propose a new method of structuring software usage model based on modules and constraint-based heuristic method. Then we propose a method for the testing data generation in consideration of the combination and weight of the input data, which reduces a large number of possible combinations of input variables to a few representative ones and improves the practicability of the testing method. To verify the effectiveness of the method proposed in this paper, four groups of experiments are organized. The goodness of fit index (GFI) shows that the proposed method is closer to the actual software use; we also found that the method proposed in this paper has a better coverage by using Java Pathfinder to analyse the four sets of internal code coverage.Keywords: constraint; data generation; GFI; software reliability testing; usage model; weighted combination Generiranje ispitnih podataka za softver zasnovano na kolektivnom ograničenju i ponderiranoj metodi kombinacijeIzvorni znanstveni članak Ispitivanje pouzdanosti softvera znači ispitivanje softvera kako bi se provjerilo da li udovoljava zahtjevima pouzdanosti i kako bi se procijenio njegov stupanj pouzdanosti. Statistički temeljeno ispitivanje pouzdanosti softvera općenito uključuje tri dijela: izgradnju modela, generiranje ispitnih podataka i ispitivanje. Stvaranje modela upotrebe softvera treba što je više moguće odražavati korisnikovu stvarnu primjenu. Potreban je ogroman broj ispitivanih slučajeva da bi se zadovoljila distribucija vjerojatnoće u slučaju stvarne upotrebe; inače će ispitivanje pouzdanosti izgubiti originalno značenje. U ovom radu najprije predlažemo novu metodu strukturiranja modela primjene softvera zasnovanu na modulima i heurističkoj metodi koja se temelji na ograničenjima. Zatim predlažemo metodu za generiranje podataka za ispitivanje uzimajući u obzir kombinaciju i težinu ulaznih podataka što smanjuje veliki broj mogućih kombinacija ulaznih varijabli na samo nekoliko reprezentativnih i povećava praktičnost primjene ispitne metode. U svrhu provjere učinkovitosti metode predložene u ovom radu, organizirane su četiri grupe eksperimenata. Ispravnost odgovarajućeg indeksa (GFI-goodness of fit index) pokazuje da je predložena metoda bliža upotrebi aktualnog softvera; također smo ustanovili da ima bolju pokrivenost kod uporabe Java Pathfinder-a za analizu četiri niza pokrivenosti internog koda.
The reliability of UAS(Unmanned Aircraft Systems) is of vital importance in practical applications. The most effective method to guarantee the reliability of UAS is to test UAS with multiple types of testing data. In this paper, we propose a method for the testing data generation of UAS in consideration of the combination and weight of the input data, which improves the availability of the method in UAS. Then we make four experiments to verify the effectiveness of the proposed method: (1) the random testing data generation experiment; (2) testing data generation considering the combination of input data experiment; (3) testing data generation considering the combination and weight of input data experiment; (4) the history data from the actual usage situation. Experiments results show that the method proposed in this paper is closer to the reality. At last, we analyse the code coverage by using Code Test System(CTS). And the analysis reflects that the proposed method has a better coverage than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.