to 2019. The annual variation patterns of forest gain and loss area were associated with the changes in forestry policies and large disturbance events. Our assessments on the long-term and fine scale forest dynamic patterns will help evaluate the effectiveness of forest management practices and forestry polices on forest resource sustainability, and climate change and greenhouse gases mitigation in Jiangxi Province and China.
China has implemented a series of forestry law, policies, regulations, and afforestation projects since the 1970s. However, their impacts on the spatial and temporal patterns of forests have not been fully assessed yet. The lack of an accurate, high-resolution, and long-term forest disturbance and recovery dataset has impeded this assessment. Here we improved the forest loss and gain detections by integrating the LandTrendr change detection algorithm with the Random Forest (RF) machine-learning method and applied it to assess forest loss and gain patterns in the Zhejiang, Jiangxi, and Guangxi Provinces of the subtropical vegetation in China. The accuracy evaluation indicated that our approach can adequately detect the spatial and temporal distribution patterns in forest gain and loss, with an overall accuracy of 93% and the Kappa coefficient of 0.89. The forest loss area was 8.30 × 104 km2 in the Zhejiang, Jiangxi, and Guangxi Provinces during 1986–2019, accounting for 43.52% of total forest area in 1986, while the forest gain area was 20.25 × 104 km2, accounting for 106.19% of total forest area in 1986. Although the interannual variation patterns were similar among three provinces, the forest loss and gain area and the magnitude of change trends were significantly different. Guangxi has the largest forest loss and gain area and increasing trends, followed by Jiangxi, and the least in Zhejiang. The variations in annual forest loss and gain area can be mostly explained by the timelines of major forestry policies and regulations. Our study would provide an applicable method and data for assessing the impacts of forest disturbance events and forestry policies and regulations on the spatial and temporal patterns of forest loss and gain in China, and further contributing to regional and national forest carbon and greenhouse gases budget estimations.
Wind damage is one of the major factors affecting forest ecosystem sustainability, especially in the coastal region. Typhoon Lekima is among the top five most devastating typhoons in China and caused economic losses totaling over USD 8 billion in Zhejiang Province alone during 9–12 August 2019. However, there still is no assessment of its impacts on forests. Here we detected forest damage and its spatial distribution caused by Typhoon Lekima by classifying Landsat 8 OLI images using the random forest (RF) machine learning algorithm and the univariate image differencing (UID) method on the Google Earth Engine (GEE) platform. The accuracy assessment indicated a high overall accuracy (>87%) and kappa coefficient (>0.75) for forest-damage detection, as evaluated against field-investigated plot data, with better performance using the RF method. The total affected forest area by Lekima was 4598.87 km2, accounting for 8.44% of the total forest area in Zhejiang Province. The light-, moderate- and severe-damage forest areas were 2106.29 km2, 2024.26 km2 and 469.76 km2, respectively. Considering the damage severity, the net forest canopy loss fraction was 2.57%. The affected forest area and damage severity exhibited large spatial variations, which were affected by elevation, slope, precipitation and forest type. Our study indicated a larger uncertainty for affected forest area and a smaller uncertainty for the proportion of damage severity, based on multiple assessment approaches. This is among the first studies on forest damage due to typhoons at a regional scale in China, and the methods can be extended to examine the impacts of other super-strong typhoons on forests. Our study results on damage severity, spatial distribution and controlling factors could help local governments, the forest sector and forest landowners make decision on tree-planting planning and sustainable management after typhoon strikes and could also raise public and governmental awareness of typhoons’ damage on China’s inland forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.