in order to restrict the loss of material. Furthermore, due to their scalability and flexibility, 3D flexible electronics (see Supporting Information (SI), where Table S1 contains a list) were considered revolutionary materials and were used in many fields such as imperceptible electronic devices, wearable electronic devices, and bionic technology. [11][12][13] Recently studies have shown the encapsulation of sulfur in the pores of carbon materials, such as meso-/microporous carbons, [11] cable-shaped carbon, [12] and carbon nanotubes/fibers, [13] can reduce the capacity fading. However, such nonpolar flexible carbon materials have a destructive disadvantage; they only have physical van der Waals (vdW) adsorption for polar Li 2 S n , which leads to the facile detachment of Li 2 S n from the carbon surface. [14] This proves that carbon-based materials alone cannot serve as the perfect host. In light of this new insight, various types of polar functional groups on carbon-based materials have been demonstrated to increase the interaction between Li 2 S n species and the electrode; these materials can generally be categorized into three types: polymers (polyaniline, polypyrrole, poly(3,4ethylenedioxythiophene) (PEDOT)), [15] metal oxides
Lithium‐sulfur (Li‐S) batteries are one of the most promising next‐generation energy‐storage systems. Nevertheless, the sluggish sulfur redox and shuttle effect in Li‐S batteries are the major obstacles to their commercial application. Previous investigations on adsorption for LiPSs have made great progress but cannot restrain the shuttle effect. Catalysts can enhance the reaction kinetics, and then alleviate the shuttle effect. The synergistic relationship between adsorption and catalysis has become the hotspot for research into suppressing the shuttle effect and improving battery performance. Herein, the adsorption‐catalysis synergy in Li‐S batteries is reviewed, the adsorption‐catalysis designs are divided into four categories: adsorption‐catalysis for LiPSs aggregation, polythionate or thiosulfate generation, and sulfur radical formation, as well as other adsorption‐catalysis. Then advanced strategies, future perspectives, and challenges are proposed to aim at long‐life and high‐efficiency Li‐S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.