Cry11Aa of Bacillus thuringiensis subsp. israelensis is the most active toxin to Aedes aegypti in this strain. We previously reported that, in addition to a 65 kDa GPI (glycosylphosphatidylinositol)-anchored ALP (alkaline phosphatase), the toxin also binds a 250 kDa membrane protein. Since this protein is the same size as cadherin, which in lepidopteran insects is an important Cry toxin receptor, we developed an anti-AaeCad antibody. This antibody detects a 250 kDa protein in immunoblots of larval BBMVs (brush border membrane vesicles). The antibody inhibits Cry11Aa toxin binding to BBMVs and immunolocalizes the cadherin protein to apical membranes of distal and proximal caecae and posterior midgut epithelial cells. This localization is consistent with areas to which Cry11Aa toxin binds and causes pathogenicity. Therefore, the full-length Aedes cadherin cDNA was isolated from Aedes larvae and partial overlapping fragments that covered the entire protein were expressed in Escherichia coli. Using toxin overlay assays, we showed that one cadherin fragment, which contains CR7–11 (cadherin repeats 7–11), bound Cry11Aa and this binding was primarily through toxin domain II loops α8 and 2. Cadherin repeats CR8–11 but not CR7 bound Cry11Aa under non-denaturing conditions. Cry11Aa bound the cadherin fragment with high affinity with an apparent Kd of 16.7 nM. Finally we showed that this Cry11Aa-binding site could also be competed by Cry11Ba and Cry4Aa but not Cry4Ba. These results indicate that Aedes cadherin is possibly a receptor for Cry11A and, together with its ability to bind an ALP, suggest a similar mechanism of toxin action as previously proposed for lepidopteran insects.
Bacillus thuringiensis subsp. israelensis, which is used worldwide to control Aedes aegypti larvae, produces Cry11Aa and other toxins during sporulation. In this study, pull-down assays were performed using biotinylated Cry11Aa toxin and solubilized brush border membrane vesicles prepared from midguts of Aedes larvae. Three of the eluted proteins were identified as aminopeptidease N (APN), one of which was a 140 kDa protein, named AaeAPN1 (AAEL 012778 in VectorBase). This protein localizes to the apical side of posterior midgut epithelial cells of larva. The full-length AaeAPN1 was cloned and expressed in E. coli and in Sf21 cells. AaeAPN1 protein expressed in Sf21 cells was enzymatically active, had a GPI-anchor but did not bind Cry11Aa. A truncated AaeAPN1, however, binds Cry11Aa with high affinity, and also Cry11Ba but with lower affinity. BBMV but not Sf21 expressed AaeAPN1 can be detected by wheat germ agglutinin suggesting the native but Sf21 cell expressed APN1 contains N-acetylglucosamine moieties.
Bacillus thuringiensis (Bt) produce inclusions that are composed of proteins known as crystal proteins or Cry toxins. Due to their high specificity and their safety to humans and the environment these Cry toxins are considered valuable alternatives to chemical pesticides in insect control programs. It is believed that Cry toxin-induced membrane pore formation is responsible for insect toxicity. The molecular mechanism of pore formation involves recognition and subsequent binding of the toxin to membrane receptors. This binding is accompanied by toxin oligomerization and transfer of domain I helices of the toxin to the lipid-water interface. This toxin insertion creates pores that lyse the cells. Several receptors from lepidopteran, coleopteran, and dipteran insects have been well characterized. Here we provide an overview of our understanding of the interactions between Cry toxin and multiple receptors in mosquitoes, in particular Aedes aegypti. We review the manner by which the receptors were identified and characterized, with a focus on three proteins – cadherin, alkaline phosphatase and aminopeptidase-N.
The Cry11Aa protein produced in Bacillus thuringiensis subsp. israelensis, a bacterial strain used worldwide for the control of Aedes aegypti larvae, binds midgut brush border membrane vesicles (BBMV) with an apparent Kd of 29.8 nM. Previously an aminopeptidase N (APN), named AaeAPN2, was identified as a putative Cry11Aa toxin binding protein by pull-down assays using biotinylated Cry11Aa toxin (Chen et al., (2009) Insect Biochem Mol Biol., 39: 688–696). Here we show this protein localizes to the apical membrane of epithelial cells in proximal and distal regions of larval caeca. The AaeAPN2 protein binds Cry11Aa with high affinity, 8.6 nM. The full-length and fragments of AaeAPN2 were cloned and expressed in Escherichia coli. The toxin-binding region was identified and further competitive assays demonstrated that Cry11Aa binding to BBMV was efficiently competed by the full-length AaeAPN2 and the fragments of AaeAPN2b and AaeAPN2e. In bioassays against Ae. aegypti larvae, the presence of full-length and a partial fragment (AaeAPN2b) of AaeAPN2 enhanced Cry11Aa larval mortality. Taken together, we conclude that AaeAPN2 is a binding protein and plays a role in Cry11Aa toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.