Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique that reveals tissue magnetic susceptibility. It relies on having a high quality field map, typically acquired with a relatively long echo spacing and long final TE. Applications of QSM outside the brain require the removal of fat contributions to the total signal phase. However, current water/fat separation methods applied on typical data acquired for QSM suffer from three issues: inadequacy when using large echo spacing, over-smoothing of the field maps and high computational cost. In this paper, the general phase wrap and chemical shift problem is formulated using a single species fitting and is solved using graph cuts with conditional jump moves. This method is referred as simultaneous phase unwrapping and removal of chemical shift (SPURS). The result from SPURS is then used as the initial guess for a voxel-wise iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL). The estimated 3-D field maps are used to compute QSM in body regions outside of the brain, such as the liver. Experimental results show substantial improvements in field map estimation, water/fat separation and reconstructed QSM compared to two existing water/fat separation methods on 1.5T and 3T magnetic resonance human data with long echo spacing and rapid field map variation.
Causal inference in cue combination is to decide whether the cues have a single cause or multiple causes. Although the Bayesian causal inference model explains the problem of causal inference in cue combination successfully, how causal inference in cue combination could be implemented by neural circuits, is unclear. The existing method based on calculating log posterior ratio with variable elimination has the problem of being unrealistic and task-specific. In this paper, we take advantages of the special structure of the Bayesian causal inference model and propose a hierarchical inference algorithm based on importance sampling. A simple neural circuit is designed to implement the proposed inference algorithm. Theoretical analyses and experimental results demonstrate that our algorithm converges to the accurate value as the sample size goes to infinite. Moreover, the neural circuit we design can be easily generalized to implement inference for other problems, such as the multi-stimuli cause inference and the same-different judgment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.