In order to understand the two types of nonlinear differential equation problems in engineering dynamics, the author proposes a numerical analysis method for the two types of nonlinear differential equations based on computer simulation. This method establishes the MATLAB algorithm structure of the numerical solution of the fourth-order fixed-step Runge-Kutta and Lorenz models, discusses the error control in the case of variable step size, and plots the numerical solutions of the Lorenz system based on MATLAB in two-dimensional and three-dimensional space graphics. The x -direction displacement and y -direction displacement data are extracted from the Lorenz equation as iterative samples of the model, the regression curve obtained after iteration has a slope of 0.996, and the iterative regression model reflects the basic characteristics of the data well. This method presents the basic idea of numerical solution verification within acceptable error limits. For solving engineering problems with differential equations as mathematical models, an effective numerical solution method is provided, and further discussion on the numerical solutions of partial differential equations is of great significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.