Type 1 diabetes mellitus (T1DM) is an autoimmune disorder resulted from T cell-mediated destruction of pancreatic β-cells, how to regenerate β-cells and prevent the autoimmune destruction of remnant and neogenetic β-cells is a tough problem. Immunomodulatory propertity of mesenchymal stem cell make it illuminated to overcome it. We assessed the long-term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from the umbilical cord for Newly-onset T1DM. Twenty-nine patients with newly onset T1DM were randomly divided into two groups, patients in group I were treated with WJ-MSCs and patients in group II were treated with normal saline based on insulin intensive therapy. Patients were followed-up after the operation at monthly intervals for the first 3 months and thereafter every 3 months for the next 21 months, the occurrence of any side effects and results of laboratory examinations were evaluated. There were no reported acute or chronic side effects in group I compared with group II, both the HbA1c and C peptide in group I patients were significantly better than either pretherapy values or group II patients during the follow-up period. These data suggested that the implantation of WJ-MSCs for the treatment of newly-onset T1DM is safe and effective. This therapy can restore the function of islet β cells in a longer time, although precise mechanisms are unknown, the implantation of WJ-MSCs is expected to be an effective strategy for treatment of type1 diabetes.
Cellular therapies offer novel opportunities for the treatment of type 2 diabetes mellitus (T2DM). The present study evaluated the long-term efficacy and safety of infusion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) on T2DM. A total of 61 patients with T2DM were randomly divided into two groups on the basis of basal therapy; patients in group I were administered WJ-MSC intravenous infusion twice, with a four-week interval, and patients in group II were treated with normal saline as control. During the 36-month follow-up period, the occurrence of any adverse effects and the results of clinical and laboratory examinations were recorded and evaluated. The lack of acute or chronic adverse effects in group I was consistent with group II.. Blood glucose, glycosylated hemoglobin, C-peptide, homeostasis model assessment of pancreatic islet β-cell function and incidence of diabetic complications in group I were significantly improved, as compared with group II during the 36-month follow-up. The results of the present study demonstrated that infusion of WJ-MSC improved the function of islet β-cells and reduced the incidence of diabetic complications, although the precise mechanisms are yet to be elucidated. The infusion of WJ-MSC may be an effective option for the treatment of patients with type 2 diabetes.
One of the primary targets of the clinical treatment of ulcerative colitis (UC) is to repair the damaged colonic mucosa. Mesenchymal stem cells (MSCs) have therapeutic potential in regenerative medicine due to their differentiation capacity and their secretion of numerous bioactive molecules. The present study describes a clinical trial (trial registration no. NCT01221428) investigating the safety and therapeutic effect of MSCs derived from human umbilical cord on moderate to severe UC. Thirty-four patients with UC were included in group I and treated with MSC infusion in addition to the base treatment, and thirty-six patients were in group II and treated with normal saline in addition to the base treatment. One month after therapy, 30/36 patients in group I showed good response, and diffuse and deep ulcer formation and severe inflammatory mucosa were improved markedly. During the follow up, the median Mayo score and histology score in group I were decreased while IBDQ scores were significantly improved compared with before treatment and group II (P<0.05). Compared with group II, there were no evident adverse reactions after MSC infusion in any of the patients in group I, and no chronic side effects or lingering effects appeared during the follow-up period. In conclusion, MSC infusion might be a useful and safe therapy for treating UC.
Type 2 diabeTes melliTus (T2DM) accounts for more than 90% of all diabetic patients and is characterized by insulin resistance, hyperglycemia, systemic low-grade inflammation, and relative lack of insulin. Most T2DM patients experience β-cell exhaustion several years after diagnosis, and thus have to accept insulin therapy. However, insulin therapy is inconvenient for patients and does not completely prevent the development of diabetic complications. Stem cells are an attractive option to ameliorate diabetes for its abundant source and potential to acquire glucose-dependent insulin secretory function. Adult stem cells are an especially good candidate for its safety in terms of tumorigenicity and ethical concerns.Adipose-derived stem cells (ASC) have been stud- The effects and possible mechanisms of adipose-derived stem cells (ASC) infusion on type 2 diabetic rats were investigated in this study. Twenty normal male Sprague-Dawley rats were included in normal control group, and 40 male diabetic rats were randomly divided into diabetic control group and ASC group (which received ASC infusion). After therapy, levels of fasting plasma glucose (FPG), HbA1c, serum insulin and C-peptide, recovery of islet cells, inflammatory cytokines, and insulin sensitivity were analyzed. After ASC infusion, compared with diabetic control group, hyperglycemia in ASC group was ameliorated in 2 weeks and maintained for about 6 weeks, and plasma concentrations of insulin and C-peptide were significantly improved (P<0.01). Number of islet β cells and concentration of vWF in islets in ASC group increased, while activity of caspase-3 in islets was reduced. Moreover, concentrations of TNF-α, IL-6 and IL-1β in ASC group obviously decreased (P<0.05). The expression of GLUT4, INSR, and phosphorylation of insulin signaling molecules in insulin target tissues were effectively improved. ASC infusion could aid in T2DM through recovery of islet β cells and improvement of insulin sensitivity. Autologous ASC infusion might be an effective method for T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.