MgAl-LDH@MIL-88A as an effective adsorbent was successfully prepared by a simple stirring method in water bath through loading MIL-88A onto the surface of flowerlike MgAl-LDH, which was synthesized via solvothermal method. Interestingly, the results of characterizations showed that the MIL-88A could still grow, but extrude the brucite-like layers of MgAl-LDH. The influences of initial solution pH, contact time, temperature, and co-existing ions on the adsorption performance of MgAl-LDH@MIL-88A were studied systematically by batch static adsorption experiments. It was found that MgAl-LDH@MIL-88A represented the highest adsorption loading of fluoride (14.00 mg g−1) at initial pH 7.0 in 420 min. The uptake process was described appropriately by the pseudo-second-order, the Temkin and the Freundlich isotherm models. The thermodynamic parameters confirmed the endothermic and spontaneous nature of adsorption. MgAl-LDH@MIL-88A was the green adsorbent as the residual mental contents ([Mg2+] = 1.095 mg L−1, [Fe3+] = 0.007 mg L−1, [Al3+] = 0.076 mg L−1) after adsorption met the Chinese sanitary standard for drinking water (GB 5749-2006). The mechanism of fluoride removal by MgAl-LDH@MIL-88A involved the electrostatic interactions between Fe3+ of MIL-88A and fluoride, and ligand exchange among hydroxyl groups of MgAl-LDH, carboxylate groups of the C4H4O4 and fluoride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.