IMPORTANCEThe safety of laparoscopic total gastrectomy (LTG) for the treatment of gastric cancer remains uncertain given the lack of high-level clinical evidence.OBJECTIVE To compare the safety of LTG for clinical stage I gastric cancer with that of conventional open total gastrectomy (OTG). DESIGN, SETTING, AND PARTICIPANTSThe Chinese Laparoscopic Gastrointestinal Surgery Study (CLASS) Group CLASS02 study was a prospective, multicenter, open-label, noninferiority, randomized clinical trial that compared the safety of LTG vs OTG with lymphadenectomy for patients with clinical stage I gastric cancer. From January 2017 to September 2018, a total of 227 patients were enrolled. Final follow-up was in October 2018. INTERVENTIONS Eligible patients were randomized to LTG (n = 113) or OTG (n = 114) by an interactive web response system. MAIN OUTCOMES AND MEASURESThe primary outcome was the morbidity and mortality within 30 days following surgeries between LTG and OTG with a noninferiority margin of 10%. The secondary outcomes were recovery courses and postoperative hospital stays.RESULTS A total of 214 patients were analyzed for morbidity and mortality (105 patients in the LTG group and 109 patients in the OTG group). The mean (SD) age was 59.8 (9.4) years in the LTG group and 59.4 (9.2) years in the OTG group, and most were male (LTG group, 75 of 105 [71.4%]; OTG group, 80 of 109 [73.4%]). The overall morbidity and mortality rates were not significantly different between the groups (rate difference, −1.1%; 95% CI, −11.8% to 9.6%). Intraoperative complications occurred in 3 patients (2.9%) in the LTG group and 4 patients (3.7%) in the OTG group (rate difference, −0.8%; 95% CI, −6.5% to 4.9%). In addition, there was no significant difference in the overall postoperative complication rate of 18.1% in the LTG group and 17.4% in the OTG group (rate difference, 0.7%; 95% CI, −9.6% to 11.0%). One patient in the LTG group died from intra-abdominal bleeding secondary to splenic artery hemorrhage. However, there was no significant difference in mortality between the LTG group and the OTG group (rate difference, 1.0%; 95% CI, −2.5% to 5.2%), and the distribution of complication severity was similar between the 2 groups. CONCLUSIONS AND RELEVANCEThe results of the CLASS02 trial showed that the safety of LTG with lymphadenectomy by experienced surgeons for clinical stage I gastric cancer was comparable to that of OTG.
The acetylation of the NH2-terminal tail of histone H4 by type B histone acetyltransferases (HATs) is involved in the process of chromatin assembly. Histone H4 associated with a nuclear type B HAT complex contains modifications in its globular core domain as well. In particular, acetylation was found at lysine 91. A mutation that alters this residue, which lies in the interface between histone H3/H4 tetramers and H2A/H2B dimers, confers phenotypes consistent with defects in chromatin assembly such as sensitivity to DNA damaging agents and derepression and alteration of silent chromatin structure. In addition, this mutation destabilizes the histone octamer, leading to defects in chromatin structure. These results indicate an important role for histone modifications outside the NH2-tail domains in the processes of chromatin assembly, DNA repair, and transcriptional silencing.
The 5′ untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5′ UTR are internal ribosome entry site (IRES) and 5′ proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5′ UTR of spleen necrosis virus (SNV), reticuloendotheliosis virus A (REV-A) and human T-cell leukemia virus type 1 (HTLV-1) exhibit PCE activity, but not IRES activity. Assessment of SNV translation initiation in the natural context of the provirus determined that SNV is reliant on a cap-dependent initiation mechanism. Experiments with siRNAs identified that REV-A and HTLV-1 PCE modulate post-transcriptional gene expression through interaction with host RNA helicase A (RHA). Analysis of hybrid SNV/HTLV-1 proviruses determined SNV PCE facilitates Rex/Rex responsive element-independent Gag production and interaction with RHA is necessary. Ribosomal profile analyses determined that RHA is necessary for polysome association of HTLV-1 gag and provide direct evidence that RHA is necessary for efficient HTLV-1 replication. We conclude that PCE/RHA is an important translation regulatory axis of multiple lymphotropic retroviruses. We speculate divergent retroviruses have evolved a convergent RNA–protein interaction to modulate translation of their highly structured mRNA.
Gastric cancer shows the highest invasive and metastasis features, especially lymph metastasis, which is closely associated with poor prognosis of gastric cancer. Although there is evidence that interleukin-6 (IL-6) can promote gastric cancer progression, the underlying specific mechanisms and the mechanisms of gastric cancer lymphangiogenesis are largely unknown. In the present study, we explore whether IL-6 could promote the proliferation and invasion activity of gastric cancer cells, and whether IL-6 mediating VEGF-C production affected the lymphangiogenesis in gastric cancer cells. Our results revealed that IL-6 and its receptors (IL-6 and gp130) are broadly expressed in various gastric cancer cell lines including SGC-7901, MGC, MKN-28 and AGS. Exogenous IL-6 increased the ability of gastric cancer cell proliferation and invasion, which could be weakened by AG490. in addition, exogenous IL-6 promoted the VEGF-C production of gastric cancer cells and the lymphangiogenesis of HDLECs. As we expected, AG490 was able to reduce these effects. Western blot analysis showed that IL-6 increased JKA, STAT3, p-STAT3 and VEGF-C protein levels in the gastric cancer cells. However, the JKA, STAT3, p-STAT3 and VEGF-C protein expression levels were inhibited by AG490. Our data suggested that IL-6 mediates the singnal pathway of JAK-STAT3-VEGF-C promoting the growth, invasion and lymphangiogenesis in gastric cancer. Thus, IL-6 and its related signal pathways may be a promising target for treatment of gastric cancer growth and lymphangiogenesis.
Chinese hamster ovary cells (CHO) have been extensively utilized as the production platform for therapeutic proteins including monoclonal antibodies in pharmaceutical industry. For early development, it would be advantageous to rapidly produce large amounts of protein in the same cell line; therefore, development of a CHO transient transfection platform with high protein expression level is highly desirable. Here, we describe the development of such a platform in CHO cells. Polyethylenimine (PEI) was used as the transfection reagent. Different media were screened for the best transfection and expression performance, and UltraCHO was chosen as the best performer. DMSO and lithium acetate (LiAc) were discovered to improve CHO transient transfection expression levels significantly. A 14-day fed-batch process was successfully developed to further increase production yield. With an optimized transient transfection process, we were able to express monoclonal antibody (Mab) in CHO cells at a high level, averaging 80 mg/L. The process was successfully scaled up to 10 L working volume in a 20 L wave bioreactor. As expected, the Mabs had similar glycosylation patterns in comparison to the Mabs produced from a stably transfected CHO cell line, while in contrast Mabs expressed transiently from HEK293EBNA cells differed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.