Host genotype and gender are among the factors that influence the composition of gut microbiota. We studied the population structure of gut microbiota in two lines of chickens maintained under the same husbandry and dietary regimes. The lines, which originated from a common founder population, had undergone 54 generations of selection for high (HW) or low (LW) 56-day body weight, and now differ by more than 10-fold in body weight at selection age. Of 190 microbiome species, 68 were affected by genotype (line), gender, and genotype by gender interactions. Fifteen of the 68 species belong to Lactobacillus. Species affected by genotype, gender, and the genotype by gender interaction, were 29, 48, and 12, respectively. Species affected by gender were 30 and 17 in the HW and LW lines, respectively. Thus, under a common diet and husbandry host quantitative genotype and gender influenced gut microbiota composite.
A high-fat diet (HFD) can easily induce obesity and change the gut microbiota and its metabolites. However, studies on the effects of high-fat diets on the host have drawn inconsistent results. In this study, the unexpected results showed that the refined HFD increased gut microbiota diversity and short-chain fatty acids (SCFAs), causing an increase in energy metabolism. Further analysis revealed these changes were caused by the different fiber content in these two diets. Male C57BL/6J mice (4–5 weeks old) were fed either HFD or refined low-fat diet (LFD) for 14 weeks. The metabolic rates, thermogenesis, gut microbiome, and intestinal SCFAs were tested. The HFD triggered obesity and disturbed glucose homeostasis. Mice fed HFD ingested more fiber than mice fed LFD (p < 0.0001), causing higher intestinal SCFA concentrations related to the increased abundances of specific bacteria in the HFD group. Also, the HFD increased metabolic heat and up-regulated thermogenesis genes uncoupling protein 1(Ucp-1), peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) expression in the brown adipose tissue (BAT). It was revealed by 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Desulfovibrionaceae, Rikenellaceae RC9 gut group, and Mucispirillum, meanwhile, reduced the abundance of Lactobacillus, Bifidobacterium, Akkermansia, Faecalibaculum, and Blautia. The predicted metabolic pathways indicated HFD increased the gene expression of non-absorbed carbohydrate metabolism pathways, as well as the risks of colonization of intestinal pathogens and inflammation. In conclusion, the HFD was obesogenic in male C57BL/6J mice, and increased fiber intake from the HFD drove an increase in gut microbiota diversity, SCFAs, and energy expenditure. Meanwhile, the differences in specific nutrient intake can dissociate broad changes in energy expenditure, gut microbiota, and its metabolites from obesity, raising doubts in the previous studies. Therefore, it is necessary to consider whether differences in specific nutrient intake will interfere with the results of the experiments.
cOur previous study confirmed the ability of Lactobacillus plantarum CCFM8610 to protect against acute cadmium (Cd) toxicity in mice. This study was designed to evaluate the protective effects of CCFM8610 against chronic Cd toxicity in mice and to gain insights into the protection mode of this strain. Experimental mice were divided into two groups and exposed to Cd for 8 weeks via drinking water or intraperitoneal injection. Both groups were further divided into four subgroups, control, Cd only, CCFM8610 only, and Cd plus CCFM8610. Levels of Cd were measured in the feces, liver, and kidneys, and alterations of several biomarkers of Cd toxicity were noted. The results showed that when Cd was introduced orally, cotreatment with Cd and CCFM8610 effectively decreased intestinal Cd absorption, reduced Cd accumulation in tissue, alleviated tissue oxidative stress, reversed hepatic and renal damage, and ameliorated the corresponding histopathological changes. When Cd was introduced intraperitoneally, administration of CCFM8610 did not have an impact on tissue Cd accumulation or reverse the activities of antioxidant enzymes. However, CCFM8610 still offered protection against oxidative stress and reversed the alterations of Cd toxicity biomarkers and tissue histopathology. These results suggest that CCFM8610 is effective against chronic cadmium toxicity in mice. Besides intestinal Cd sequestration, CCFM8610 treatment offers direct protection against Cd-induced oxidative stress. We also provide evidence that the latter is unlikely to be mediated via protection against Cd-induced alteration of antioxidant enzyme activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.