In the pork fat content detection task, traditional physical or chemical methods are strongly destructive, have substantial technical requirements and cannot achieve nondestructive detection without slaughtering. To solve these problems, we propose a novel, convenient and economical method for detecting the fat content of pig B-ultrasound images based on hybrid attention and multiscale fusion learning, which extracts and fuses shallow detail information and deep semantic information at multiple scales. First, a deep learning network is constructed to learn the salient features of fat images through a hybrid attention mechanism. Then, the information describing pork fat is extracted at multiple scales, and the detailed information expressed in the shallow layer and the semantic information expressed in the deep layer are fused later. Finally, a deep convolution network is used to predict the fat content compared with the real label. The experimental results show that the determination coefficient is greater than 0.95 on the 130 groups of pork B-ultrasound image data sets, which is 2.90, 6.10 and 5.13 percentage points higher than that of VGGNet, ResNet and DenseNet, respectively. It indicats that the model could effectively identify the B-ultrasound image of pigs and predict the fat content with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.