MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression. Moreover, we demonstrate that miR-206 directly targets c-Met and inhibits its downstream PI3k/Akt/mTOR signaling pathway. In contrast, miR-206 inhibitors promote the expression of c-Met and activate the PI3k/Akt/mTOR signaling, and this effect could be attenuated by the PI3K inhibitor. Moreover, c-Met overexpression assay further confirms the significant inhibitory effect of miR-206 on HGF-induced EMT, cell migration and invasion. Notably, we also find that miR-206 effectively inhibits HGF-induced tube formation and migration of human umbilical vein endothelial cells (HUVECs), and the mechanism is also related to inhibition of PI3k/Akt/mTOR signaling. Finally, we reveal the inhibitory effect of miR-206 on EMT and angiogenesis in xenograft tumor mice model. Taken together, miR-206 inhibits HGF-induced EMT and angiogenesis in lung cancer by suppressing c-Met/PI3k/Akt/mTOR signaling. Therefore, miR-206 might be a potential target for the therapeutic strategy against EMT and angiogenesis of lung cancer.
Single-mode operation of distributed feedback (DFB) terahertz quantum cascade lasers based on metal-stripe surface grating structure is reported. Strong DFB coupling and low waveguide loss conditions are obtained while maintaining a high laser output power. A record high edge-emitting optical power of 57 mW, ∼96.2 µm at 10 K together with a well-shaped far-field pattern is presented. Reliable dynamic single-mode emission at all injection currents and operating temperatures is realized with a side-mode suppression ratio >17 dB.Index Terms-Distributed feedback lasers, quantum cascade lasers, single-mode lasers.
We demonstrate continuous-wave (cw) operation of terahertz (THz) quantum cascade lasers emitting at 3.2 THz based on bound-to-continuum active region and semi-insulating surface-plasmon waveguide design. Optical power of 62 mW with a threshold current density of 285 A/cm 2 is obtained at 10 K from a 130-𝜇m-wide and 1.5-mm-long laser in cw operation. Maximum cw operation temperature is up to 60 K. In pulsed mode, peak optical power more than 100 mW at 10 K and 2.1 mW at 85 K are observed from a 230-𝜇m-wide and 2-mm-long device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.