Using antibodies raised against human platelet phenol sulfotransferase (PST), immunohistochemical studies were performed to determine the cellular localization of PST in several areas of human brain. In the hippocampus PST immunoreactivity was localized in both the pyramidal and nonpyramidal neurons and was in greatest abundance in the CA2 and CA3 areas. In the striatum the immunoreactivity was most predominant in the large neurons of the globus pallidus and in the medulla the staining was scattered throughout the neurons of the raphe nucleus and the reticular formation. The selective presence of PST in the neurons of the CNS raises the issue as to the role of this enzyme in sulfating neurotransmitters because PST has been shown to be capable of conjugating a variety of neurotransmitters including the catecholamines as well as the tyrosine moiety of a number of small peptides such as enkephalin and cholecystokinin.
The excessive drag/torque and the backing pressure is an important factor that restricts the improvement of the penetration rate and the extension of the drilling in the sliding drilling process of extended-reach wells and horizontal wells. To deal with this problem, this paper developed a novel controllable hybrid steering drilling system (CHSDS) based on the friction-reducing principle of a rotating drill string. The CHSDS is composed of a gear clutch, hydraulic system, and measurement and control system. By controlling the meshing and separation of the clutch with the mud pulse signal, the CHSDS has two working states, which leads to two boundary conditions. Combined with the stiff-string drag torque model, the effects of the drilling parameters on the friction-reducing performance of the CHSDS are analyzed systematically. The results show that the friction reduction effect in the inclined section is the most significant, followed by that in the horizontal section, whereas there is almost no impact in the vertical section. Friction reduction increases with the rotary speed and the drilling fluid density, whereas it decreases with the increase in the surface weight-on-bit and the bit reaction torque. Field tests confirm the separation and meshing function of the CHSDS. The developed controllable hybrid steering and friction-reducing technology provides an alternative approach for the safe and high-efficiency drilling of horizontal wells.
Coiled tubing (CT) has been widely used for oil and gas exploitation, however corrosion of CT under high pressure and high temperature (HPHT) environment was often reported, also corrosion induced failures of CT welds were often observed to occur during service. Corrosion related behaviors of CT welds are not clear. Therefore, a study of the corrosion resistance of CT welds under HPHT environment is carried out. In order to efficiently evaluate the corrosion resistance of welds, some test samples were obtained by linear cutting out of a CT110 in service on the site. The water samples from gas field were used as the test reagent to simulate the actual corrosive medium. Based on the results of weight loss test under HPHT corrosive environment and tensile test under room conditions, the corrosion sensitivities of the welding seam and base material under various temperatures and partial pressures of CO2 as well as the mechanical properties of the corroded CT were compared and evaluated quantitatively, the corrosion morphologies and material products of the test samples were analyzed by scanning electron microscope (SEM). The test results showed that the corrosion rates of the welding seam in a HPHT caldron were 1.7, 2.0 and 1.2 times of the base metal’s when the total pressure is 4MPa, and the temperature is 30°C, 60°C and 90°C, respectively. The corrosion rates of the welding seam is 2.0, 2.1 and 2.0 times of the base metal’s when the partial pressure of CO2 is 0.1MPa, 0.2MPa and 0.3MPa, respectively. The yield strength of the weld seam after corrosion test was found to be reduced by 4.8% (the yield strength of the base metal was reduced by 4.0%) and its tensile strength was reduced by 8.2% (the base metal was reduced by 7.1%). This indicates that CT weld seam is more susceptible to corrosion than CT base material under service condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.