Primary hepatic neuroendocrine tumor (PHNET) is rare liver cancer and related prognostic factors are unclear. The aim of this study was to analyze the prognostic risk factors of patients with PHNETs and establish an assessment model for prognosis. The clinical information of 539 patients with PHNETs who met the criteria for inclusion was extracted from the Surveillance, Epidemiology, and End Results (SEER) database. These patients were randomly assigned to the training (269 cases) and validation sets (270 cases). Prognostic factors in patients with PHNETs were screened using the Cox proportional regression model and Fine–Gray competing risk model. Based on the training set analysis using the Fine–Gray competing risk model, a nomogram was constructed to predict cumulative probabilities for PHNET-specific death. The performance of the nomogram was measured by using receiver operating characteristic curves, the concordance index (C-index), calibration curves, and decision curve analysis (DCA). No differences in clinical baseline characteristics between the training and validation sets were observed, and the Fine–Gray analysis showed that surgery and more than one primary malignancy were associated with a low cumulative probability of PHNET-specific death. The training set nomograms were well-calibrated and had good discriminative ability, and good agreement between predicted and observed survival was observed. Patients with PHNETs with a high-risk score had a significantly increased risk of PHNET-specific death and non-PHNET death. Surgical treatment and the number of primary malignancies were found to be independent protective factors for PHNETs. The competing risk nomogram has high accuracy in predicting disease-specific survival (DSS) for patients with PHNETs, which may help clinicians to develop individualized treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.