With developments of the electronics industry, more components are being included in electronic devices, which has led to challenges in thermal management. Using reduced graphene oxide embedded with MQ silicone resin (RGO/MQ) nano-aggregates as the composite filler and silicone rubber (SR) as the matrix, a simple approach is designed to prepare RGO/MQ/SR composites. Reduced graphene oxide (RGO) was first used as a substrate for the growth of MQ silicone resin by hybridization, forming sandwich-like micro structured RGO/MQ nano-aggregates successfully. Then, RGO/MQ was integrated into α,ω-dihydroxylpolydimethylsiloxane based on the in situ solvent-free blending method, followed by condensation and vulcanization, fabricating the final RGO/MQ/SR composites. The effective strategy could enhance the adaptability between graphene and silicone matrix under external stimuli at room temperature by embedding nanoscale MQ into the interface of graphene/silicone as the buffer layer. Obvious improvements were found in both thermal conductivity and mechanical properties due to excellent dispersion and interfacial compatibility of RGO/MQ in the host materials. These attractive results suggest that this RGO/MQ/SR composite has potential as a thermal interface material for heat dissipation applications.
The thermally conductive properties of silicone thermal grease enhanced by hexagonal boron nitride (hBN) nanosheets as a filler are relevant to the field of lightweight polymer-based thermal interface materials. However, the enhancements are restricted by the amount of hBN nanosheets added, owing to a dramatic increase in the viscosity of silicone thermal grease. To this end, a rational structural design of the filler is needed to ensure the viable development of the composite material. Using reduced graphene oxide (RGO) as substrate, three-dimensional (3D) heterostructured reduced graphene oxide-hexagonal boron nitride (RGO-hBN)-stacking material was constructed by self-assembly of hBN nanosheets on the surface of RGO with the assistance of binder for silicone thermal grease. Compared with hBN nanosheets, 3D RGO-hBN more effectively improves the thermally conductive properties of silicone thermal grease, which is attributed to the introduction of graphene and its phonon-matching structural characteristics. RGO-hBN/silicone thermal grease with lower viscosity exhibits higher thermal conductivity, lower thermal resistance and better thermal management capability than those of hBN/silicone thermal grease at the same filler content. It is feasible to develop polymer-based thermal interface materials with good thermal transport performance for heat removal of modern electronics utilising graphene-supported hBN as the filler at low loading levels.
Methoxyl-capped MQ silicone resin (MMQ) was first synthesized by the hydrosilylation of vinyl-containing MQ silicone resin and trimethoxysilane and then used in condensed room-temperature vulcanized (RTV) silicone rubber as a self-reinforced cross-linker. Results show that modified silicone rubber exhibits good light transmission. Compared with unmodified silicone rubber, the hardness, tensile strength and elongation of MMQ at the break are increased by 26.4 A, 2.68 MPa and 65.1%, respectively. In addition, the characteristic temperature of 10% mass loss is delayed from 353.5 °C to 477.1 °C, the temperature at maximum degradation rate is also delayed from 408.9 °C to 528.4 °C and the residual mass left at 800 °C is increased from 1.2% to 27.7%. These improved properties are assigned to the synergistic effect of the rigid structure of MMQ, the formation of a dense cross-linking structure in polymers and the uniform distribution of MMQ cross-linking agent in RTV silicone rubber.
MQ silicone resins represent a broad range of hydrolytic condensation products of monofunctional silane (M units) and tetrafunctional silane (Q units). In this work, a Bio-Phenol MQ silicone resin (BPMQ) was designed and synthesized by the hydrosilylation of hydrogen containing MQ silicone resin and eugenol in the presence of chloroplatinic acid. The structure, thermal property, and antibacterial property against Escherichia coli of the modified MQ silicone resin were investigated. The results showed that BPMQ has been prepared successfully, and the thermal stability of this modified polymer improved significantly because of the introduction of phenyl in eugenol. The temperature at the maximum degradation rate increased from 250 °C to 422.5 °C, and the residual yields mass left at 600 °C were increased from 2.0% to 28.3%. In addition, its antibacterial property against Escherichia coli was also enhanced markedly without adding any other antimicrobial agents. This improved performance is ascribed to special functional groups in the structure of eugenol. The BPMQ polymer is expected to be applied to pressure-sensitive adhesives and silicone rubber products for the biomedical field due to its reinforcing effect and antioxidant quality.
Eugenol, used as bio-phenol, was designed to replace the hydrogen atom of hydrogenterminated siloxane by hydrosilylation reaction under the presence of alumina-supported platinum catalyst (Pt-Al2O3), silica-supported platinum catalyst (Pt-SiO2) and carbon nanotube-supported platinum catalyst (Pt-CNT), respectively. The catalytic activities of these three platinum catalysts were measured by nuclear magnetic resonance hydrogen spectrometer (1H NMR). The properties of bio-phenol siloxane were characterized by Fourier transform infrared spectrometer (FT–IR), UV-visible spectrophotometer (UV) and thermogravimeter (TGA), and its antibacterial property against Escherichia coli was also studied. The results showed that the catalytic activity of the catalyst Pt-CNT was preferable. When the catalyst concentration was 100 ppm, the reaction temperature was 80 °C and reaction time was 6 h, the reactant conversion rate reached 97%. After modification with bio-phenol, the thermal stability of the obtained bio-phenol siloxane was improved. For bio-phenol siloxane, when the ratio of weight loss reached 98%, the pyrolysis temperature was raised to 663 °C which was 60 °C higher than hydrogenterminated siloxane. Meanwhile, its autonomic antibacterial property against Escherichia coli was improved significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.