Dental pulp stem cells (DPSCs) possess self-renewal capability, multi-lineage differentiation potential, and can generate a dentin-pulp-like tissue in vivo, which is promising for tooth regeneration. To enlarge the cells resource of DPSCs and explore the feasibility of DPSCs-mediated immune therapy, it is prerequisite to investigate the immunological properties of DPSCs and the underlying mechanisms. Human DPSCs and peripheral blood mononuclear cells were isolated and cultured. Then we used lymphocytes proliferation assays, cytokines detection, Transwell cultures, neutralization experiments, and flow cytometry to examine the in vitro immune characteristics of DPSCs. We found that DPSCs failed to stimulate allogeneic T cells proliferation and suppressed T cells proliferation, B cells proliferation, and mixed lymphocyte reaction. In addition, DPSCs could up-regulate IL-10, down-regulate the production of IL-2, IL-17, and IFN-γ, and did not affect the production of IL-6. Monoclonal antibody against transforming growth factor-β1 restored the T cells proliferation inhibited by DPSCs. Moreover, the population of regulatory T cells increased significantly and T-helper 17 cells decreased significantly in peripheral blood mononuclear cells co-cultured with DPSCs. These data confirmed that DPSCs are low immunogenic, could inhibit the proliferation of lymphocytes, regulate the production of cytokines in vitro, and the secretion of transforming growth factor-β1 may be involved in this event.
The benefits of baricitinib in coronavirus disease‐2019 are inadequately defined. We performed a systematic review and meta‐analysis of studies of baricitinib to determine its clinical efficacy and adverse events in patients with COVID‐19. Databases were searched from their inception to September 5, 2021. The primary outcome was the coefficient of mortality. We also compared secondary indicators and adverse events between baricitinib treatment and placebo or other treatments. Twelve studies of 3564 patients were included and assessed qualitatively (modified Jadad and Newcastle–Ottawa Scale scores). Baricitinib effectively improved the mortality rate (relative risk of mortality = 0.56; 95% confidence interval: 0.46–0.69; p < 0.001; I2 = 2%), and this result was unchanged by subgroup analysis. Baricitinib improved intensive care unit admission, the requirement for invasive mechanical ventilation, and improved the oxygenation index. Data from these studies also showed that baricitinib slightly reduced the risk of adverse events. Regarding the choice of the drug dosage of baricitinib, the high‐dose group appeared to have additional benefits for clinical efficacy. Our study shows that baricitinib may be a promising, safe, and effective anti‐severe acute respiratory syndrome‐coronavirus‐2 drug candidate, with the advantages of low cost, easy production, and convenient storage.
BackgroundMDS1 and EVI1 complex locus protein EVI1 (MECOM) is an oncogenic transcription factor in several kinds of cancers. However, the clinical significance of MECOM in glioblastoma multiforme (GBM) has not been well elucidated.Patients and methodsOur study enrolled 86 resected samples of GBM in three medical centers. We detected the expression of MECOM in all the 86 samples by immunohistochemistry and compared the difference of MECOM mRNA between tumor tissues and adjacent tissues with real-time polymerase chain reaction. With immunoblotting, we detected the MECOM expression in different GBM cell lines. Moreover, we analyzed the correlation between MECOM expression and clinicopathologic factors with chi-square test, and evaluated the prognostic value of MECOM with univariate and multivariate analysis.ResultsIn GBM tissue, the percentage of MECOM high expression is 41.9% (36/86). The mRNA of MECOM in tumor tissues is remarkably higher than that in adjacent tissues, indicating the oncogenic role of MECOM in GBM. MECOM exists in all the detected cell lines with different abundance. Moreover, MECOM is correlated with poorer overall survival rate (P=0.033) and can be identified as an independent prognostic factor in GBM (P=0.042).ConclusionMECOM could be considered as an independent prognostic factor in GBM, predicting it as a potential and promising molecular drug target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.